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MATHEMATICAL INTERDISCIPUNARY RESEARCH

Monday 7th June 1999
TUXEDO The UK Spatially Extended Dynamics Organisation

Organisers: David Rand
10.00 - 11.00 Coffee

11.30 - 12.10 Daniel Margerit (Warwick): Singular perturbation equations for 3D excitable media.
Abstract: Excitable media, such as nerve fibers and heart tissue, are typically modeled with reaction diffusion equations containing two chemical species that evolve on very
different time scales. In three dimensions solutions to these equations take the form of rotating scroll waves (interfaces) ending on filaments. The ratio of the two times scale
defines a natural small parameter epsilon. Exploiting the inherent smallness of epsilon, singular perturbation methods are used to derive three-dimensional equations for each
of two boundary layers: interface region (scroll) and filament region (core), and for the associated outer region. This provides the first fully three-dimensional description of
the wavefronts and filaments in excitable media.

12.20 - 1.00 Nigel Burroughs: T-cell self assessment: physiologically structured growth models.
Abstract. Growth models incorporating soluble growth factors will be discussed, incorporating receptor density modulation. Such models show robust growth characteris-
tics (growth is only weakly dependent on the specificity of the T-cell clone) while producing a high level of competition between clones. Thus the optimal T-cell clone present
is selected.

2.00 - 2.40 Hans Henrik Rugh (Warwick): Coupled maps and analytic function spaces.
Abstract: We study small deformations of an infinite direct product of uniformly expanding circle maps (all analytic). We show that there is a natural invariant measure
with holomorphic marginal densities and that time correlations decay exponentially. In the proofs we introduce new techniques of renormalization mappings to obtain uni-
form bounds for a Perron Frobenius operator associated with the coupled map.

2.50 - 3.10 Vesna Kadelburg (Cambridge): Explicit Bounds for continuation of breathers.
Abstract: We find explicit estimates for the bounds for continuation of descrete breathers in one-dimensional chains, for some particular cases of the external potential. The
estimates are based on the existance proof of MacKay and Aubry, by continuation from the anti-integrable (uncoupled) limit.

3.40 - 4.20 Guy Gielids (Cambridge): A new phasde transition?

Abstract: Starting from a discrete time stochastic dynamics on {0,1}Z , we define a deterministic map on [0,1]Z . The almost trivial connection with the intensively studied
underlying stochastic system provides a great deal of insight in these new maps. Exploiting this, we translate a notion of phase transition generally used in statistical physics
to the context of (infinitely dimensional) deterministic dynamics. This is joint work with Robert MacKay.

4.30 - 5.10 Tom Bridges (Surrey): Symplectic Pattern Formation.
Abstract: Symplectic pattern formation is the study of patterns in spatially extended systems which also have some element of conservation or sym-
plecticity. The natural structure for such systems is multi-symplecticity, where distinct symplectic structures are assigned for the space and time direc-
tions. In this talk we will focus on the transverse instability of solitary waves and fronts. Given a solitary wave or front propagating in one spatial
direction, a transverse instability is an instability propagating in a direction transverse to the original wave direction. We show that multi-symplec-
ticity gives a natural geometric instability criterion for such patterns.

5.10 Wine and snacks in the Mathematics Institute Common Room.

All programmes will take place in Lecture Room MI 1 of the Mathematics Institute

graphics courtesy of Bob Scharein - http://www.cs.ubc.ca/nest/imager/contributions/scharein/KnotPlot.html



Singular lgerturbatlon equations for
excitable media

Daniel Margerit and Dwight Barkley
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Waves in 2-d and 3-d excitable
medla
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Excutable medla such as nerve flbers and
are typically modeled with

containing two chemlcal specnes that evolve on very
ne scales :

eau/('?t = 62A2u+f(u,v)
 Ov/ot = e0 A% + g(u,v)

with e < 1.

In the Dwight model

flu,v) = u(l—u)(u—up)
gu,v) = u—w
utpb, = (v+b)/a
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Waves solutions

This equation has stationnary waves solutions :

e Spiral waves in 2-d :

Figure 1. The u field

e Scroll waves in 3-d :

Reasons for the motion of the filament ?
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west € o Scro“. Filament.
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Coordinates and geometry
Filament

X = X(s,1) T : torsion
K : curvature (t,n,b)

L ocal coordinates

M(r,¢,s) (e, e,,t)

x = OM = X(s,t) + re.(p,s,t)

Figure 2: The central curve C and the local co-ordinates
of the scroll filament
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S =S(r,s,t) o = ®(r, s,t)
x=0P =8 = X(s,t) + re.(®(r,s,t), s, t)
U=r0®/0r x=0T+%, o(s,t) = X
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Asymptotic Expansions solution

Unknown

u(r, p, s, t,€) 7 v(r, @, s,t,€)?
X(s,t,€) ? ®(r,s,t,€) 7

" Fife scaling

t/61/3
{17/62/3
€1/3
51/3

|

SN 8
Il

New form of the system

E20u/0t = EA*u+ f(u,v)
Ov/ot = §°A%v +eg(u,v)

with e <€ 1.

Expansions solution

e Curves and Surfaces :

X(s,t,e) = XO(s,t) +eXP(s,t) + ...
®(r,s,t,e) = 30 (r s,t) + e®W(r s,t) + ...
U(r,s,t,e) = O(rs,t)+ 0B (rs,t)+ ...



e Outer region:

u(r, s, @, t,€) u'® (r,s,0,t) + eu(l)(r, S, p,t) + ...
v(r, s, p,t,€) = v(o)(r, s, p,t) + ev(l)(r, S, p,t) + ...

e Interface boundary layer :

(7, 8,€) coordinates

x = OM = X(s,t) + 7e.(®(F, s,t),s,t) + EN

u(f, 8,6, te) = wOF 5,8 t) + e (7, 5,6 t) + ...
v(’F,s,f_,t,e) = (0)(r s,f_,t)—i—ev( )(r,s,f_,t)Jr...
where £ = £ /e.

e Core boundary layer :

u(r,s, 7, t,e) = uc(o)(r, s, T,t) + euc(l)(r, S, T,t) + ...
v(r,s,T,t ) = vc(o)(r, s, T,t) + evc(l)(r, S, T,t) + ...

where 7 = r/e.
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Equations in local coordinates
Coordinates (7, p, s)

1 0 ou 1 0 Ou
2 2
e“0u/0t = e ( (rhs 87') + "2hs 0 (h3590) + H(Hu)) + f(u,v)

2 . e Y . e r————— Y .
+e (X ers + (X +re,) ecpr@@ + (X + re,.) t’Hu)

1 0 ov 1 0 Ov
_ 3(_—- = bl
ov/ot = § (rhg 8r(rh38r) -+ i 8g0(h38<p) - H(Hv)) + eg(u, v)
- ov 1 0v
+X e, 22

5 T (X +re,) - e(P;% + (X +re,) - tHo

ou ou
Hu = {(%')(P e O'Tgs; /h3
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Coordinates (7, ¢, s)

e20u/0t = (Asu+ 1%26%(91/2%?)) + f(u,v)

€2 (X + 7 (<I>e<p + e'r) + gN) : (Vsu = N@)

23
1 0 0
/ot = §° <A3v ~fe 7/352(91/28_2 ) + eg(u,v)

+ (X + 7 (cbego -+ e'r) + gN) : (st + Ng—§>

H11(9u H128’U, Hzlc‘?u H22(9u
S . ES ES
U l(gaf+g(93)+2(g(9f+g(?s)
1 ou ou
AS — 1/2 11 1/2 22
u 1/2 <8T(g 8~) (g 88)>

1 1/2 120U 1/2 120U
91/2( FECA as) (g 957



Solution
Quter

e Leading order :

f(u(o),v(o)) — 0
v\ /ot = 0
e First order :
ov/ot = g(ht(v (0)) (0)):
L (1>fv( ()
N v(0)
fu(ul®),0(0)
Core
e leading order :
X(O):O
Interface
e Leading order :
i(0)
51}_ 0

82uz’(0)
%

— Typeset by Foill TpX —

(%)

10



y

l

»

The matching law leads us to

0@ = 4O (g = ()
wO(€ = +o0) = utO(€ = 0)

| 00 =5 =0a/2 -0 v(0) = ¢

| gp gt —1
w0 = (1 + 6"5/‘/5)

e First order :

2,,8(1) . . . .
652—2 n uz(l)fu(uz(O)’ ,US) _ _vz(l)fv (uz(O)7 ,US)
. o
—rde, - N ¢
Out(0)
2H——
73

Solution and matching (1/u and 1/(1 — u)) :

o) /ot = g (v(®)

h3r . |
——20 =——'V 4 2F
Vg V2
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5 = o(l—rKcos(®))
g° = (1+¢Hhs" +r%x°

1 2
H = 2933/2[0’1(1 + ) — 2a9rx VY]

hs (U3 + U v,
_(h32 +172) (U + 0 +r7,)

a1 = [R5’V + roK sin @]
+h32o K[V cos ® + sin ®]
+rx8h§ — rh3x
Os S
a; = —x[hi¥?+ 0 —oKr¥sin®] — hj¥,

Coordinates (r, s, ) that fixes the interface

~

©=¢+ (I>+(7", s,t)+ (& (r,s,t) — &1 (r,s,t) — ) siHZg

ANy
1
o
ANy
i
)

Then :

o _ . g
ot h 85
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Stationnary solutions
wle) = w®+ew® 4 .

Simplifications

K=T=0 hi=0c=1 x=71

Quter solution

—wDguM) /5p = gF(v(?)

(1 + U2)(1+rr?)

(1+r*r2)o¥/or = - ;
+r(1 4+ r°7m? + ¥?)
—B(1 + rr? 4 ©?%)3/2
+¥(1 4 U?)rr?

where the lengths r is the previous multiplied by /w
and

Vv

B = 2a w3/?

(1 —ov%)2m

The boundary limit at infinity gives the numerical value
of B.
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Figure 3: Evolution of B as a function of the twist 7

Figure 4: Shape of the spiral for 7 = 0 (solid line) and
T = 2 (dashed)
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Comparison with Direct Numerical simulations

of the stationnary solution

1 | ' ‘ I

0.5

B(w‘)

T
|

Figure 6: w as regard of 72
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Perspectives

e Equations for ¥(1)(r), correction of the shape of the
spiral, value of w1 in 2-d stationnary

e Equations for \Il(l)(r,t) in 2-d no stationnary
e Equations for ®1)(r, s,t) in 3-d (no stationnary)

e Notice : same operator than linear stability of the
leading order stationnary solution. Papers about
drift : motion = matching with the core for the
perturbation.

e Equation of motion for X as a result of a matching
with the core at first order

e Particularcase: K <1

e Numerical solution of the leading order on fixed
boundary

e Helix solution 7
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