Task 2.2.3

Numerical Flowfield Computation by Simplified Methods

Adaptation of 3D Vortex Filament Methods

- D. MARGERIT
- A. GIOVANNINI
 - P. BRANCHER

http://www.maths.warwick.ac.uk/~dmargeri

Fluid Mechanics Institute of Toulouse

3D Numerical Vortex Method Techniques

- 1) Slender filament asymptotic equation of motion
- ⇒ Separated Slender Filaments
- ⇒ No reconnection

- Ad-hoc desingularization methods:
 An ad-hoc parameter has to be chosen.
- Callegari and Ting equation of motion (SIAM 78):
 Derived from the Navier-Stokes Equations in the small core limit.

Rem: Viscous or inviscid.

Exact desingularization methods:
 The ad-hoc parameter is chosen to be equivalent to the Callegari and Ting equation.

2) Vortex Methods

⇒ Discretisation of the vorticity field with Blobs or Filaments.

- Vortex Blob Methods:
 Equation for the local strength
- Vortex Filament Method:
 The local strength is automatically given by the link between points

Rem: Viscous diffusion is treated

- by a random walk
- by a deterministic technique

Rem: N-body problem \Longrightarrow Fast solvers

- Vortex-in-Cell Methods
- Other tricks

Implementation of a Slender Vortex Filament Solver

1) Input:

Choice between:

- Initial position of the filaments
- Previous simulation data

2) Solver:

Slender vortex filament solver for *closed* filaments Choice between:

- The Callegari and Ting Equation of motion
- ≠ exact desingularisation methods

3) Output:

- Run-time filaments drawing with OpenGL on a SGI station
- Movie of the simulation
- History data file
- Final condition data file

Movies

Figure 1:

Figure 3:

Figure 2:

 $\verb|http://www.maths.warwick.ac.uk/~dmargeri/movie| i.html|$

Validation

Validation against a linear stability analysis of a preturbed circular vortex ring.

In progress

- Implementation for open filaments
- Validation against the linear stability analysis of two trailing vortices:
 \$\int_1\$ \int_2\$
 \$\pm \core \structure \sigma_1\$
 - ⇒ Slender Vortex Filament Solver : closed or opened filament.
- Implementation of a Vortex Filament Method
- Validation against the slender vortex filament solver