Dear Stephen J. Cowley,

I was very pleased to learn from Oliver Jensen that you would like
to invite me in your Tuesday afternoons seminar in the Department of
Applied Mathematics and Theoretical Physics. I thank you very much for
this. I have already given the date of 1 February to Oliver Jensen.

Here is the Title of my talk

"Expansion of the Biot and Savart law applied to a curved slender vortex
filament with axial variation."

Here 1is an Abstract

"We will show how to obtain the two first orders of the expansion of the
potential flow induced by a curved vortex line with the distance $r$ to
the line as the expansion parameter by using the method of matched
asymptotic expansion of singular integral. The order $O(r)$ of this
expansion will be given with both its local and global integral parts.
This method will also be used to give the inner expansion of the flow
induced by a slender vortex with the slenderness $\epsS$ as the expansion
parameter and an application will be given for a circular vortex ring with
axial core structure variation. Finaly we will summarise the derivation of
the equation of motion of the central line [Callegari and Ting SIAM J.
Appl. Math. 35(1), 1978], give its generalisation at next order and speak
about its generalisation to a curved filament with axial variation."

I would like to know if this material corresponds to what you want.
would like to know how many time I have. I would like to know if the
audience will essentially composed of persons of your group
High-Reynlds—-Number Flow (already familiar with asymptotic descriptions)
or if it a much more general audience. Just please let me know.

Thanks you very much.
Yours Sincerely,

Daniel Margerit



Expansion of the Biot-Savart law
applied to a curved slender vortex
filament with axial variation

D. Margerit
University of Warwick
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2. The potential flow induced by a vortex line
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1 Introduction

e Domaine of study Incompressive laminar flows with
vorticity and Re > 1

@%—vVv:——V}—)—l—yAv
ot 0
V-v=0

e The field of Vorticity

W=V XV

%—L; +vWw = wVv+rAw

v(x) = Vip(x) + % / / / w(x/’i - (x)j|3_X/) ax,

Background velocity Ay = 0 + Induced velocity




2 The potential flow induced by a
vortex line

The curved filament without thickness w = I'dct

$

I I L
V(T) = EEQ‘l——EKlH;b—I—QJC "f—O(T)
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— XA, j104 Aq 19sadA| —

Dimensionless : length L = O(1/K) velocity I'/L

1
v(r — 0, o (L) = '?*;T—/':eg =t Z; COS peqg

K S

4T | r

| I 4 .
+rl + (B — 3C — —S—§e9> ri+ O(r?Inr),

HAH|— 1n-——-11b
( |

47
where
= -—3—£2 (e,sin2p + ey cos 2¢p) (ln i é)] + ig Fee cos 2 + iEO]
16 r 3 16 w |2 18
+Zl7_r (Kgsingp — KT cos @) [Ing - 1] t.
Fukumoto and Miyazaki JFM 222, 1991
Result : L = 8
Q, 'K

= e (cos peg —b) + T'A.



~ XALHio4 Aq 19s3dA] —

Dimensionless : length L = O(1/K) velocity I'/L

[

v r

g [} K S
vir = 0,9,a) = 5 % —X—(()su,a/E()-{—A—l———{hl——lJb—l—()( r)
27T 47

m“"'._,

where

572 t(a + a*) x a)b(a
Aw = L [Ptata)xd Kb

BT —5j3 ldl3 2|a*|

with d = X(a) — X(a + a*)

Result :

o
[l

S

'K
Q = h (cos peg — b) +TA
' 47 | |

®

|da™,




Al ma T e

Cla) = [ o

_5/2
with d = X(a) — X(a + a*) and

1

1 ("2 ta+a*) xd K(a)b(a)
am | _5/2

Blp.a) = e(pa)x |

|

d *
P a1

+S/2[_t(a+a*)
—5/2 d|®
e-(p,a)-d

— fola,a™)]da”,

|d|5 t(a +a*) x d] — fe(a,a™)]da”,

flaa?) = —T5lt(@) + K(an(a)a’]

1 a*? !

TP 2

fc(a,a*)

[Ka(a)n(a) + K(a)T(a)b(a) — 7K*(a)t(a)]

_ K2(a)b(a) cos(p)

4]a*|



MAESI Method

1) Change of variable a* = a’ — a is done :

/ — X(a'
virg,a) = o [HELEEEE) g
e |x—X(a')|
| [+5/2
= — K(r, ¢, a,a")da”,
am J_s/2 |

2) Smaii intermediate parameter 1 with r < 1 < 1
v(r,p,a) = Ex + In
1 i 1

+5/2
Ex = — Kda* +——/ Kda*
—~5/2 4 n

In = / Kda*

3) Stretched variable @ = a*/r introduced

1 n/r
In=—r Kda

L
K(r, p,a,a) = K(r,p,a,ra)
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4) QOuter Part : expansion with r of Ex

e expansion of K with r and integrate

® expansion with n < 1

Example :

[T52¢a+a*)xd ., [T5?K(a)b(a)

/ 3 aa :/ *

n Id| n 2|CL ’
/*5/2 ata)xd_Klabla), .
, df” 2|a*|

L

aa

because

t(a+a*) x d/|d|” = K(a)b(a)/2]a*| +O(1)

5) Inner part : expansion with r of In

e expansion of K with 7 and integrate

e expansion of In with n/r > 1

6) Addition of Ex and In : 7 disappears
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3 The expansion of the velocity field induced by a
slender vortex

)]

Dimensionless : length L = O(1/K) velocity I' /L

e Outer limit : € — 0 with r fixed: vout = yout0) 1 eyout(l) 1 O(€?)

e Inner limit : € — 0 with 7 = r /e fixed: v'"" = e~ Lyinn(0) 1 yinn(l) 1 O(¢)

1 2w(F, @' a' €) x [ X+ re, — (X' + er'e!
\:(r,w,s,t,ﬁ)Z—///e (T, a,0) x X+ ( 5 : T)]hgf’dff’dgo’da,’,
Am X +re, — (X' + er'el)|

where hi = (1 — K(a')er’ cos(y’)) .

Problem : Velocity induced by w(x) = w(7, ¢, a,€) = e 2w O(F, ¢, a)



o vout(0) : [ine vortex, vout(t) £ ()

e MAESI method in € :

znn(O _ // /d,';/dSO/

vinn(l) _

nl

€

/ ((1 o' a) x t(a )lnk—r’dr'dgo

5

/ﬂ
1

) / (O) x n(a)ln =7'dr'dy’

-2
// gr’dr’dgp

(0)
d < Ha) sin(p — @' )7 2di dy’

_I_
1
4m
K

g Cos ¢ fr'zd'r’dcp :

(O)( 7,9’ a) x [Fep(¢,a) — re.(p,a)] /k2
K = 7+ 72— 2FF cos(p — ¢')
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4 Application to a slender vortex
with axial variation

e Chosen vorticity

1 1 e r r
w:—2 —__2—t+6r9(a) rer-f—MEQ:'H(l—
€

divw =0and w-N =0 on 7 = 7y(a)

e Decomposition v=v(7 =0,a) + V
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o @ B I

1T

Induced velocity :

Vznn(l) _

and

(g(a’7 77) — O)

Vznn(O) _

F\? K
’FO 167T

7 e

27r'Fge9 if 7 < 7o(s)
1

—epifr>r :

- o if T > To(s)

3 sin e, + cos peg] if ¥ < 7o(s)

P - _
_— | |= (T_Q) +4+4ln—f— sin e,
167 r ro

2 pa

+ [(@) +41n _1] cos cpe9> if 7 > 7o(s)
r ro

4

V(on,a):A+——[ln S ] .

(6770)



5 Equation of motion of a curved
slender fllament

Dimensionless :

length L = O(1/K) > 1= 0(6), /L = ¢, velocity I'/ L

I 1 I'é € 1
Re—;—m>>1 Sw_M—M_E—I.O(G)

e Equation of Callegari and Ting

‘ + Kfm 2 [ln(S/e) — 14+Cy(t) + Cu(t)] b(s,t) |
with Q = A(s,t) — [A(s,1) -t(s,t)] t(s,t)

L[ s |tsts ) xd  K(s,t)b(s, 1)
7 dP? 2[A(s, 8, 1)]

>
—~
\.CIJ

~~
e

1

d = X(s,t) —X(s+5',t)



e Cut-off equations

ox o1 = L [ o1, gD X KD X0

ey X(s,6) = X(s', 1)

where I = [0,27[\[s—S¢, $+5c|  s.: cut-off length
Singular Integral for the small parameter s,

MAESI 4+ Comparison
Sc(sat) = €€xXp (1 —In2 - Cv(t) o Cw<t)) /0(87t)

Regularization methods



6 Derivation, Assumptions,
Next order

e Equations on curvilinear coordinates (r, ¢, s)

V(T7<707 S7t7 6) — X(S7t7 6) +V(T7 907 S7t7 e)
V = ue,+vey+ wt
— Biot Savart
— Continuity

(urhg)r -+ (h?ﬂ))@ + P, ~ Tm% = ——ff’XS -t

where hs = o (1 — rK(s)cos(p)) and 0 = | X
— Navier-Stokes

1 .
a = —Vp+vAV+— [ —X,
hs \hs "/,

o
l

OV X, .
(—5]—5—) . +(V—re,) - VV + s (w— re, - t)

N —@L—eJr e, +
o), ., ot A B

e Expansions and Matching

X = Xt + XW(st) +..
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— Quter limit: € — 0 with r fixed:
vout — vout(O) + 6Vout(l) + 0(62)

o Expansion in the Biot Savart law
¢ Matching law:

expansion at r = 0 and replace r = Te
= Boundary Conditions at ¥ = o
Only cos(p) and sin(y) parts depend on the
unknown X !

— Inner limit: € — 0 with 7 = r/e ﬁxed
uinm — (1)( )
virr = e yO(F s ) 4+ o(F go,s t)
wirr = elwO(F s, t) + w(F,s,t)

Rem : u(9) = 0 assumed

Leading order axisymmetric

o Equations + Boundary Conditions at 7 = 0
Equations on cos(y) and sin(yp) need not BC at
r=o00!

‘N

-
A S
P e

SSs<—wr .

A R R g S | e

A S S SR

7 SE S
S —

T eSS SN

P

T e =
P

¢ Expansion
|dentification
= Equation of motion

AN T TR e kT U L g

o
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- Xdp|i04 Aq 1esadA] —

Equation of motion for X ()

X(s,t) = Q + KE;; 2 [—Ine+1In(S) — 14+C,(t) + Cyu(t)] b(s,t)

Equation of motion for X*) :Fukumoto and Miyazaki + correcting terms

X(l)

= E; + con(s,t) + {C’f - %KT [lne—l— g — lnS} } b(s,1)
T

1 1
By = CE ——é;K(l)(s,t)+EK(1)(3,t)lne—~i%Ks [ 5

5
31ne+3+———31n5]




- Xdio4 Aq 3850dA| ~

LT

Compatibility conditions for the symmetrical leading order :

v(®) and w® do not depend on s
Non-axisymmetric first order only depend on leading order

Temporal equations for the symmetrical leading order : closed vortex

A (0 , (1 v(0) 1 S(0)
_ “(Fo N — ) = 2 (5,00
= (] ) =5 ()

- 7 S(0)




P S @ U]

Compatibility conditions for the axisymmetric part v( ) ((; ) of first order :

( ) does not dependent on s and w( ) such that :

1),
(9'lU£ )(’f’, S,t) _ ——0'(0) L2 S( ) (O)
Os [OM

Non-axisymmetric second order only depend on leading order

Temporal equations for the axisymmetric part first order : closed vortex

Hvl o [ |1 o 1 S©)
c “(FoN)._ | . — — (7 s
at [ff(”’c ”} ) ~3 (), 5o =4 0

v

Q= | Fwe,

ot F

awc(l) B 1 I: (1):' B ]./,:3 <wc(1)) S(O) _ (1



{ Generalisation, Axial variation

e Short time t/e? :

— Initial velocity of the vortex filament # One-time
analysis
Performed in 2-d : Ting and Tung Phy. Fluid 65

— leading order not axisymmetric

— leading order axisymmetric and short waves
§ = s/e: Widnall instability

o Weak Axial variation One-time analysis :

§ = se Klein and Ting 91

e Axial variation One-time analysis :
Klein and Ting, Appl. Math. Lett. 92

Temporal equations for a leading order compatible
that depends on s

e Ad-hoc studies (toy models) :

— Lundgren Ashurst : Area-varying waves JFM 89

— Marshall : Curved vortices with variable core area
JFM 91

— Leonard : Nonlocal theory of area-varying waves
Phys.Fluids 94



e Short time 7 =t/e:

leading order axisymmetric and axial variation

The compatibility conditions become

() b0
( ) ‘|—0_(0)’UJ T

0 o (0) 0
3;2) +_(T”f )e <1>%_E%;;v«n
0
ouw® o m P W

oy Wr e dm+g@

0o . (0)?
p(o)z—/ Cdr
= r

"Long wave scaling” (Shallow water)

w®

1
1) _
uc (O)/Fws
w(O) — —1/%
r =
y = 7°
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P4 a8 U] g By B e

oar 2 5
5r g ¥Psly T gyl

oY 2 2 2
. 2 —1 N2
D + —oy ¥y D s + —y%(o)rrs - —U(O)y¢s [y~ ' D%*y]

or o

D?*¢ = rw® = 4yip,,
Leibovich JFM 70

length L = O(1/K) > 1 = 0(6), /L = ¢, velocity T'/ L

z a S s
£ ‘(,—\,‘\
‘ > €
’ - A\
¢« (;, VA
- 2
/€° (/¢ C(A) _
< | ] ) éx




‘o Similar vortex:

S(t) length of the closed filament

S0 %[1_6—&/5)1

0 — 7%%(%) o~ (7/3)’

5 = %‘1(1 4a2/0tsgo*)dt*>
V() N

vvvvvvvvv

orl-|
al

onl -t
e)

C,(t) = (1+vy-In2)/2—1né

Colt) = =2 (%)4(7710/5)2
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e Equations of Compatibility :

— ()Y " (0)
(Tu, )T+U(0)ws
_ (0
Mug) w® (o)

= HEORE

(0) (0)
0),,(1) Ps W~ (0
Ws Uy’ + ) + 0 W,

xher e w= %X +V

V=u Ee+VEg Wb
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