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Selection of Twisted Scroll Waves in Three-Dimensional Excitable Media
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The selection of shape and rotation frequency for scroll waves in reaction-diffusion equations model-
ing excitable media is investigated. For scrolls with uniform twist about straight filaments, asymptotic
methods are used to derive free-boundary equations at leading and first order. Both orders are validated
against full solutions of the reaction-diffusion equations. Using these two orders and with no adjustable
parameters, the shape and frequency of waves are correctly predicted except possibly near the point of
propagation failure where the core becomes large.
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In three space dimensions, persistent waves in excitable
media frequently take the form of scrolls which rotate
about one-dimensional filaments. Figure 1 illustrates such
a wave from numerical computations — the scroll is uni-
formly twisted along a straight filament [1]. Scroll waves
of various complexities are observed in excitable chemical
systems [2] and in cardiac tissue where these waves are be-
lieved responsible for certain cardiac arrhythmias [3]. The
pervasiveness of these structures and their ultimate impor-
tance to biophysical and medical problems have led to con-
siderable efforts to understand their dynamics [1,2,4], both
at the fundamental level of spatiotemporal pattern forma-
tion and at a practical level specific to cardiology [3]. This
Letter is aimed at the nonlinear pattern selection problem
for which we derive equations predicting the shape and ro-
tation frequency of twisted scroll waves such as in Fig. 1.

Consider the following partial-differential-equation
(PDE) model of excitable media [5] written in the space-
time scales proposed by Fife [6,7]:

e2≠u�≠t � e2=2u 1 u�1 2 u�

µ

u 2
y 1 b

a

∂

, (1a)

≠y�≠t � e�u 2 y� . (1b)

This and similar two-component reaction-diffusion mod-
els capture essential properties of excitable media and are
widely used in theoretical studies, e.g., [8–13]. Parame-
ters a and b collectively control the excitation threshold
and duration. The parameter e is small, reflecting the dis-
parate time scales of the fast activator variable u and slow
inhibitor variable y.

Previous work on the selection of waves in excitable me-
dia through asymptotic expansions [9–12,14] has focused
primarily on two dimensions (2D) and entirely on leading
order in the small parameter e. For example, expanding
the rotation frequency as

v � v�0� 1 ev�1� 1 · · · , (2)

only the leading-order frequency v�0� has been obtained
[10,11]. While the small-e (Fife) limit has played a pivotal
role in 2D theoretical studies, infinitesimal values of e
are not physically realized and the leading order does not

accurately predict many properties of waves at finite e [15].
However, one of our significant findings (Fig. 5 below) is
that expansions to first order in e are predictive well into
regimes of physical interest. In this Letter we establish
equations to first order in e which precisely characterize
the dependence of scroll shape and rotation frequency on
twist and on model parameters.

For the leading-order asymptotics, we consider first the
general three-dimensional (3D) case. At this order the ap-
proach is similar to that in 2D apart from an added ge-
ometrical complexity. The medium is divided into three
regions: outer, interface, and core as in Fig. 2. The fila-
ment is the curve X�s, t� inside the core.

The outer region comprises the bulk of the medium. It
consists of both excited (1) and quiescent (2) portions for
which u � u1

� 1 and u � u2
� 0, respectively, to all

orders in e. Expansion of the y field in the outer region
gives y � ys 1 ey�1� 1 · · · , where ys is the stall con-
centration (value such that a plane interface is stationary)
and y�1� is to be determined.

FIG. 1. Twisted scroll-wave solution of Eqs. (1). Isosurface is
shown for u � 0.5. The filament is white. The structure rotates
in time with frequency v about the filament. The twist, defined
later in the text, is t̃ � 0.4 (or t � 0.35); a � 1.0, b � 0.1,
and e � 0.2.
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FIG. 2. Scroll geometry showing outer regions [excited (1)
and quiescent (2)], interface regions [wave front (1) and wave
back (2)], and core region. The filament X�s, t� is parametrized
by s and time t. Local coordinates to the filament are �r, w, s�,
with �r, w� in the plane normal to X�s, t� and w measured from
n, the normal vector to X�s, t�.

Separating excited and quiescent states are the thin in-
terfaces where u undergoes rapid change. These consist
of a wave front (1) and a wave back (2), which on the
outer scale are given by F6�r , s, t�. Solving leading- and
first-order inner equations for u across the interface (y is
constant at these orders across the interface) and matching
to the outer u solution, one obtains equations for interface
motion [16]. Thus Eqs. (1) reduce to equations for y�1� in
the outer region together with equations for the motion of
the two interfaces (free boundaries):

≠y�1��≠t � u6 2 ys
, (3)

2
r �F�0�6h6

p
m6

� 2H6 6

p
2

a
y�1�6

, (4)

where F�0�6 is the leading-order approximation to F6, and
where h6 � j≠X�≠sj �1 2 rK cosF�0�6�, K is the fila-
ment curvature, m6 is the determinant of the metric tensor,
H6 is the mean curvature of interface F�0�6, and, finally,
y�1�6 is the value of y�1� at interface F�0�6. Equation (4)
equates normal velocity of the interface to twice the mean
curvature plus the speed of a plane interface. Phenomeno-
logical approaches to excitable media yield similar equa-
tions [17].

As for spiral waves in 2D [12], the core plays no role
at leading order in the solutions we consider other than to
regularize the cusp that would otherwise exist as the two
interfaces come together.

We consider the specific case of a straight filament and
seek solutions with uniform twist t � ≠F�≠s and con-

stant frequency v�0�
� �F�0�. The angle between the two

interfaces can be shown to be constant: DF�0� � F�0�2 2
F�0�1

� 2p�1 2 ys� and y�1�6 can be eliminated from
the free-boundary equations to obtain a single universal
equation describing the shape of the interface [16]:

q
dC�0�

dr̃
1

C�0��1 1 C�0�2�

r̃
� r̃�q 1 C�0�2�

2 B�q 1 C�0�2�3�2
, (5)

where C�0� � rdF�0�1�dr � rdF�0�2�dr , and q � 1 1

t̃2r̃2, with r̃ �

p
v�0�r, t̃ � t�

p
v�0�. The eigenvalue B

is related to v�0� and model parameters via

B � �m�v�0��3�2
, m3�2

�

p
2 pys�1 2 ys��a , (6)

where ys
� a�2 2 b. With t̃ � 0, Eq. (5) is as given by

Karma [11] with Eq. (6) giving the leading-order spiral
frequency v�0� as a function of parameters �a, b�. For
t̃ fi 0, Eq. (5) agrees with the work of Bernoff [10].

Figure 3(a) shows C�0� at two values of t̃ and Fig. 4(a)
shows dependence of the selected B as a function of t2�m
[19]. These results are obtained by shooting: integrating

Eq. (5) from r̃ � 0 to large r̃ and finding B such that C�0�

matches the relevant large-r̃ limit from Eq. (5):

C�0��r̃ ! `� � 2
r̃
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p
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We turn to the order-e asymptotics. For a straight scroll
with twist t rotating at frequency v, we have ≠�≠t �

2v≠�≠w and ≠�≠z � t≠�≠w. For this case Eqs. (1)
become

2e2v≠u�≠w � e2=2
�

u 1 u�1 2 u�

µ

u 2
y 1 b
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∂

, (8a)

2v≠y�≠w � e�u 2 y� , (8b)

where =2
� � ≠2�≠r2 1 �1�r�≠�≠r 1 �q�r2�≠2�≠w2.

From (8), solving leading-, first-, and second-order inner
equations for u and y across the interface (y is not a con-
stant across the interface at second order) and matching to
the solution in the outer region at these orders, one obtains
[16] DF�1� � F�1�2 2 F�1�1

� 0 and one again obtains
a single universal equation for the interface shape:

q
dC�1�

dr̃
1 l�r̃�C�1�

� m�r̃� � Dm1�r̃� 1 m2�r̃� , (9)

FIG. 3. Shape functions C at leading order (a) and first order
(b) for two values of t̃: t̃ � 0 corresponds to 2D spiral waves
and t̃ � 0.4 is the case shown in Fig. 1 [18]. Curves are free-
boundary solutions; points are from PDE solutions.
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FIG. 4. Dependence of eigenvalues B and D on twist. Curves
are free-boundary solutions; points are from PDE solutions for
values of �a, b� given in the legend.

where C�1� � av�0�rdF�1�6�dr and
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The eigenvalue D in Eq. (9) is related to v�1� by

D � av�1�. (10)

The large-r̃ behavior of C�1� is
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The general solution of Eq. (9) is
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h �r̃�
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where C
�1�
h is the homogeneous solution
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For C�1� to be finite at r̃ ! 0, A � 0. Then solutions
to Eq. (12) diverge exponentially at infinity unless D has
the selected value

D � 2
c2

c1

, ci �

Z `

0

�mi�r��C
�1�
h �r�� dr . (13)

Figure 3(b) shows solutions to Eq. (9) and Fig. 4(b) shows
D from Eq. (13) as a function of twist.

We now compare the asymptotic results with full PDE
solutions. For this we use Newton’s method [13] to solve
Eqs. (8) for twisted, straight scroll waves. The operator

=2
� is discretized on a polar grid typically with 256 points

in w and radial spacing Dr � 0.05. The r derivatives
are computed by finite differences and w derivatives are
computed spectrally.

Figure 5 shows the dependence of v on e from the PDE
solutions. This figure clearly shows the existence of the

FIG. 5. Scroll frequency v versus e from numerical solutions
of PDE (8) for two values of twist. Lines are fits to the data at
small e and are indistinguishable from asymptotic predictions at
first order in e. �a, b� � �1.0, 0.1�.

Fife limit: a finite-frequency limit as e ! 0. Over a sub-
stantial range of e, the frequency is very well captured by
the first two orders in e: v � v�0� 1 ev�1�. The linear
approximation fails only near the point of propagation fail-
ure where no waves are supported by the medium [8,20].
For 2D waves (t̃ � 0), v falls to zero near this point,
while the branch of twisted waves ends at finite v.

Extrapolation of frequency data to e � 0 gives v�0�

and thus B by Eq. (6). The slope of v versus e gives
v�1� and hence D by Eq. (10). Using least-squares fits to
numerical data, we have obtained B and D for parameters
�a, b� spanning the values for which waves are found [13].
The results plotted in Fig. 4 compare well with asymp-
totic predictions. There is scatter in the values of D due to
higher-order effects, small on the scale of Fig. 5.

From the computed u fields we find the functions F6

as curves on which u � 1�2 and from these C is com-
puted by differencing. Analogously to the frequency, from
the dependence of C on e we find C�0� [Fig. 3(a)] and
C�1� [Fig. 3(b)]. [Only the data for �a, b� � �1.0, 0.1� are
shown, but other cases are similar.] There is again good
agreement with asymptotic predictions.

In Fig. 6 we compare full solutions of PDE (8) with
the interface curves at leading order (w � F�0�6) and at
leading plus first order (w � F�0�6 1 eF�1�6). With the
first-order contribution, the agreement is excellent and con-
tains no adjustable parameters.

The solutions we have obtained are straight scroll waves
with uniform twist which rotate uniformly in time. These
solutions do not exhibit unwinding, observed in finite ge-
ometries [21], in which the twist decays to zero. Solutions
may be unstable to perturbations however. Direct time-
dependent simulations of Eqs. (1) in 2D [5] show that the
spiral wave in Fig. 6 is linearly stable. Simulations of
Eqs. (1) in 3D [22] with imposed vertical periodicity over
distance 2p�t show that at �a, b, e� � �1.0, 0.1, 0.2� the
straight scroll first becomes linearly unstable at t � 0.3

(t̃ � 0.35). The state in Figs. 6(c) and 6(d) is thus slightly
beyond the instability threshold: after many tens of ro-
tations, the scroll undergoes transition to a helical state
[1,23].
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FIG. 6. Comparison between PDE solutions (grey scale) and
asymptotic results (white curves). (a) t̃ � 0, asymptotics at
leading order. (b) t̃ � 0, asymptotics at leading plus first order.
(c) t̃ � 0.4 (t � 0.35), asymptotics at leading order. (d) t̃ �

0.4 (t � 0.35), asymptotics at leading plus first order. Black is
the interface 0.1 # u # 0.9; light grey (dark grey) is u , 0.1

(u . 0.9). The radius is 20; a � 1.0, b � 0.1, e � 0.2.

We summarize the significance of our results. For any

desired model parameters �a, b, e� and twist t, the scroll
frequency can be approximated as v � v�0� 1 ev�1�,
where v�0� and v�1� are found from (6) and (10) with
eigenvalues B and D read off from Fig. 4. In addition, the
limits (7) and (11) are good approximations for r * 4.
Hence away from the filament the scroll shape can be
obtained directly from B and D without explicitly solving
for the shape functions C�0� and C�1�. Implicitly this
provides the dispersion relation — frequency as function
of scroll wavelength—commonly used to characterize
waves in excitable media, e.g., [15].

In conclusion, we have solved the selection problem for
twisted scroll waves in excitable media with straight fila-
ments, and we have directly validated leading-order and
first-order free-boundary equations by comparison with
full PDE solutions. These two orders provide excellent
approximations to PDE solutions except possibly near the
point of propagation failure. We have considered a spe-
cific PDE model of excitable media, but as in [10,11], the
free-boundary equations we have derived apply to a large
class of models. It would be of interest in the future to
consider more extensively the linear stability of straight
twisted solutions, to extend this analysis to more complex
scroll waves where the motion of filaments is important,
and finally to compare the asymptotic solutions directly
with experimental results.
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