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Axial core-variations of axisymmetric shape on a curved slender vortex
filament with a similar, Rankine, or bubble core

Daniel Margerit
Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, Alle´e du Professeur Camille Soula,
31400 cedex Toulouse, France

~Received 31 July 2001; accepted 28 August 2002; published 7 November 2002!

The dynamics of axial core-variations of axisymmetric shape on a vortex filament is derived from
the Navier–Stokes equations in the slenderness limit. The core of the vortex is of similar, Rankine,
or bubble type with a centerline of any shape. In this limit, a two-time-scale asymptotic approach is
used to study the dynamics of the axial core-variations and of the centerline. The short-time
dynamical equations of the axial core-variations are given and are inviscid at leading and first
orders. The induced short-time and normal-time dynamics of the centerline is obtained. The full
two-time-scale dynamics of the axial variations and of the filament motion is discussed qualitatively.
The normal-time dynamics of vortex filaments without axial core-variations is given in a short form.
Within the two-time-scale framework, the dynamics of axial core-variations around this one-time
base flow is then studied in the small amplitude limit. The normal-time equations of a vortex bubble
are given. The bubble has no axial variations, a centerline of any shape and can have a nonpotential
core. The equation for the ultra-short-time dynamics of axial variations on this bubble is given.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1516210#
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I. INTRODUCTION

Slender vortex filaments are high concentration of v
ticity along a geometrical curve of the fluid flow; they ha
been studied since more than a century, as their dynam
gives the one of the flow. Almost all the vorticity is inside
tube of small thicknessd compared to the characteristic r
dius of curvatureR of its centerline; the ratiod/R defines a
small parameter«. In the small thickness limit, this tube is
‘‘boundary layer’’ ~in the singular perturbation method poi
of view!; and, except for a straight filament, it is movin
with a velocity that depends on its core structure, as can
found from the Biot–Savart law of induction.1,2 This small
moving region of the flow is difficult to track in experiment
measurements and induces stiffness in direct nume
simulations of vortex filaments.

Asymptotic methods have been used to get ride of
stiffness1,2 and to extract, at leading order, a nonstiff equat
for the filament motion. This asymptotic theory assumes t
the leading-order core is axisymmetric and without ax
core-variations. Generalized systems of equations for
ments with axial core-variations have been proposed.3–6 In
these studies, the characteristic length of the axial variat
is of the order of the radius of curvature which is bigger th
the thicknessd; short wavelengths are not taken into accou
These systems are ad hoc equations because they ar
asymptotically derived from the Navier–Stokes~N–S! equa-
tions.

For astraight vortex filament with axial core-variation
~bulging waves! Melander and Hussain7 give a spectral com-
putation of the axisymmetric equations. They compute
bulging wave of wavelength'11d and amplitude'0.5d at
Re5G/n'665, whered is the mean core radius,G is the
4401070-6631/2002/14(12)/4406/23/$19.00
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circulation of the vortex filament, andn is the kinematic
viscosity. In dimensionless variables with the wavelengthL
511d as the characteristic length, these parameters of si
lation correspond to«5d/L51/11'0.09, and to a viscous
parameter~see Sec. II! a[Re21/2/«'0.43. Arendtet al.8

give the evolution of any initial axial variations of sma
amplitude in the dynamics of the linearized axisymmet
equations.

In this paper I derive and study the leading-order set
equations of motion ofcurved slender vortex filaments o
any shapewith axial core-variations. From the study of the
eigen-oscillations of acircular vortex ring, Kopiev and
Chernyshev9 give the dynamics of the bending modes th
oscillates on the timet of the motion of the vortex ring. The
dynamics of these bending modes can also be found fro
linear stability study of the asymptotic equation of motion
vortex filaments.10,11 For a circular vortex ring Kopiev and
Chernyshev9 also give the dynamics of bulging modes th
can be shown to oscillate on the short timet5t/«. It shows
that a two-time-scale analysis can be used to study them
a general curved filament. This would extend the one-ti
analysis of the previous asymptotic theory1 without axial
core-variations. It also extends to a curved filament the o
and short-time analysis by Souza12 of a straight filament with
core-variations. In this paper, I carry out this two-time-sc
analysis.

The paper is organized as follows. In Sec. II, I give t
geometrical description of the centerline and of the vor
core in local coordinates near the centerline of the filame
In these coordinates, I give the dynamical equations of
velocity field, those of the interfaces~if there are any: i.e.,
vortex sheet when there is a jump of axial velocity or bub
free-boundary!, and all the two-time-scale asymptotic expa
6 © 2002 American Institute of Physics
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4407Phys. Fluids, Vol. 14, No. 12, December 2002 Axial core-variations of axisymmetric shape
sions. In Sec. III the cascade of asymptotic equations
given in the two-time-scale framework. From the axisy
metric part of the first-order asymptotic equations, I obt
short-time-scale dynamical equations for the axial co
variations of axisymmetric shape. These equations are
same as those obtained by Souza12 for a straight filament.
For a curved filament they were first given in Margerit a
Brancher.13 Souza pointed out~private communication! that
the equations for a straight filament might be relevant t
curved filament. Here, I prove that curvature does not g
adding terms in these equations and I also give the indu
short-time dynamics of the curved vortex centerline. In S
IV the one-time~normal-time! dynamics of vortex filaments
without axial core-variations of the Callegari and Tin
theory1 is given in a short form. This gives the one-time ba
flow that is used in the linear stability study of Sec. V. Th
analysis is carried out in the two-time-scale framework
study the dynamics of small axial core-variations around
one-time base flow. In Sec. VI the one-time~normal-time!
continuous vortex-core of the Callegari and Ting theory1 is
extended for a vortex bubble with a centerline of any sh
and with a nonpotential core. An equation for the ultra-f
dynamics of axial variations of the bubble free-boundary
given. This generalizes the theory of Genoux14–16 of vortex
bubbles of circular centerline and potential core. Finally
conclusion is given in Sec. VII.

Several steps of the derivations are given in the app
dices. Appendix A gives the asymmetric part of the equati
at first order and Appendix B gives the axisymmetric part
the equations at second order. In Appendix C the core w
out axial variations appears to be the unique stationary s
tion of the short-time-scale equations given in Sec. III.
nally in Appendix D the axisymmetric part of the stationa
solution of the short-time-scale equations at next orde
proven to be the sum of a part without axial variations and
a part with axial variations. The structure of this second p
is unique and is induced from the local stretching of t
centerline. Fortunately this structure was that introduced
Margerit17 to generalize the Callegari and Ting theory1 at
next order.

II. NOTATIONS AND TWO-TIME EXPANSIONS

Here, I give the geometrical description of the flow fie
and of the filament, and the local coordinates that are use
discussion of the characteristic scales of the asymptotic s
der filament regime and the basic assumptions of
asymptotic study are then given. Finally, the equations
the flow are written on the local coordinates and the tw
time-scale expansions are given.

The closed centerline of the slender vortex of circulat
G and length S is described by the vector functionX
5X(s,t) wheres stands for the arc-length att50. At each
point of this curve the Frenet vector basis~t, n, b! exists
with, respectively, the tangent, normal, and binormal vecto
I introduce alocal curvilinear coordinate systemM (r ,w,s)
and the curvilinear vector basis (er ,ew ,t) valid near this line.
This system is defined in the following manner; ifP(s) is the
projection on the centerline of a pointM thenPM is in the
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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plane~n, b!, and thus polar coordinates~r, w! can be used in
this plane with the associated polar vectors (er ,ew) and with
w the angle betweenn andPM.

The relative velocityV is defined by

v5Ẋ~s,t !1V~r ,w,s,t !, ~1!

wherev is the velocity of the fluid andẊ the local filament
velocity. The radial, circumferential, and axial componen
(u,v,w) of the relative velocity are defined byV5uer

1vew1wt. The vorticity field v is given by v5“ÃV
1tÃẊs /h3 , whereh35s(12rK (s)cos(w)), K is the local
curvature, ands5uXsu.

In the asymptotic theory of vortex motion, the thickne
d of the ring is of orderl and the other length scales, fo
example the local radius of curvature 1/K or the lengthS of
the closed filament are of the same orderL. Since the vortex
is slender the small parameter«!1 is defined as the ratio
l /L. I nondimensionalize the velocity field withG/L, all
lengths withL, and the time withL2/G. Theouter problemis
defined by theouter limit: «→0 with r fixed, which de-
scribes the flow far from the centerline; and theinner prob-
lem by the inner limit: «→0 with r̄ 5r /« fixed, which de-
scribes the flow near the centerline.

The Reynolds numberRe5G/n, where n is the kine-
matic viscosity, is related to« by Re

21/25a«. Here, thevis-
cous numbera5O(1) is defined bya25 n̄/G, where n̄
5n/«2. The inviscid vortex ring is obtained in the limita
50. The asymptotic ansatz based on the small slender
ratio allows to unify the related analyses for the Navie
Stokes and Euler equations.

In this study I assume that the vorticity field is center
near the centerline and rapidly decays at large distance. I
assume that the vorticity distribution is of bounded supp
or decays exponentially. The same standard assumptio
also taken for the axial velocity field.

A. General equations

The continuity equation in these curvilinear coordina
(r ,w,s) is1

~urh3!r1~h3v !w1rws2Tr ww52r Ẋs•t, ~2!

where T is the local torsion of the filament. The Navier
Stokes equation becomes1

a52¹p1nDV1
n

h3
S 1

h3
ẊsD

s

, ~3!

wheren is the kinematic viscosity, and the accelerationa is

a5S ]V

]t D
r ,w,s

1~V2r ėr !•¹V1
Ẋs

h3
~w2r ėr•t!1Ẍ,

with

S ]V

]t D
r ,w,s

5
]u

]t
er1uėr1... .
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Here and in the whole paper, the pressure is in fact the p
sure divided by the constant density of the incompress
fluid. The boundary conditions of these equations areu5v
50 at r 50.

B. Discontinuous vorticity field

In an inviscid fluid, if the vorticity is inside a tube of
thicknessd t, the location of this interfacer 5d t(w,s,t) is an
unknown function. At this interface one has to satisfy bo
the continuity of pressure

@@p##[p~d t1!2p~d t2!50, ~4!

and the continuity of the normal velocity

@@v"N##50, ~5!

whereN is the normal vector to the interface and is given
N52¹F/u¹Fu with F5d t(w,s,t)2r and

¹F5S 2er1
1

d t

]d t

]w
ew1

1

h3
S ]d t

]s
2sT

]d t

]w D tD .

The dynamical equation for the interface is given by t
kinematic boundary condition

]d t

]t
1~V~d t6!2d tėr !•¹F50, ~6!

whered t6 is used to allow the possibility of the interface
be a vortex sheet of strengthg5N3@@v##. Following Wu,18

a dynamical equation for this strengthg can be written but
will not be used here. For this inviscid fluid the thin she
layer is assumed to be without thickness and there is
viscosity (n50) in Eq. ~3! which becomes the Euler equa
tion.

In local coordinates, Eqs.~5! and ~6! become

2@@u##1
1

d t

]d t

]w
@@v##1

1

h3
S ]d t

]s
2sT

]d t

]w D @@w##50,

~7!

]d t

]t
2u1

1

d t

]d t

]w
v1

1

h3
S ]d t

]s
2sT

]d t

]w Dw2d tėr•¹F50,

~8!

where all velocity components are taken on the interfacr
5d t6.

C. Vortex ring bubble

In the case of aninviscidvortex ring bubble, the location
of the free-boundaryr 5db(w,s,t) is another unknown func
tion. The pressure jump at the free-boundary of the bubbl

@@p##b5p~db1!2p~db2!52Yk , ~9!

whereY is the surface tension divided by the constant d
sity of the incompressible fluid andk(w,s,t) the mean cur-
vature of the free-boundary.

The bubble14 contains liquid vapor of pressurePv and
noncondensables of partial pressurePg5Pg0(V 0

b/V b)k,
whereV b is the volume of the bubble andk is the polytropic
constant of the ideal gas in the bubble. Here,V 0

b andPg0 are
their initial values. The pressurep(db2)5Pv1Pg inside the
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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bubble is uniform. As pointed out by one of the refere
polytropic variations are merely an approximate simplific
tion of the full thermodynamics as they are based on an
hoc coupling between two otherwise independent thermo
namics variables. I will not remove this assumption of po
tropic variations by including an energy balance equation
the analysis as was suggested by this referee and I post
this work for the future.

The dynamical equation of the free-boundary is

]db

]t
1~V~db1!2dbėr !•¹F50, ~10!

where¹F is as before but withd t replaced bydb. For this
inviscid fluid the thin diffusion layer along the interface
assumed to have no thickness and there is no viscosityn
50) in Eq. ~3! which becomes the Euler equation.

As the fluid is outside of such a bubble, singularities c
exist inside the bubble, which is not possible in a homo
neous fluid, and the conditionu5v50 at r 50 is no longer
valid. Vortex ring bubbles without axial variations and with
circular centerline have been studied by Genoux14 for a po-
tential flow. In fact, vortex ring bubble can be embedding
a vortical flow: for example, one can easily consider a vor
ring bubble with a vortex core of Rankine type. The circu
tion G of the ring is thenG5G11G2 , whereG1 is the cir-
culation induced by the vortex sheet on the free-bound
andG2 is the added circulation due to the vortical core.

The Weber number isWe5LY/(«G2) and I defineȲ

5«Y, P̄v5«2Pv , P̄g05«2Pg0 . I am interested by the re
gime We5O(«22) because the effect of the surface tensi
will come at leading order in the pressure jump~9!.

D. Two-time analysis and expansions

In the two-time analysis, the expansion of the veloc
Ẋ5] tX1«21 ]tX of the centerline is

Ẋ5] tX
~0!1]tX

~1!1O~« log«!,

with the following expansion of the centerline:

X5X~0!~s,t !1«X~1!~s,t,t5t/«!1... .

Here, fast oscillations of the centerline of amplitude« can
exist.

The inner expansions of the relative velocity comp
nents and of the pressure are

uinn5u~1!~ r̄ ,w,s,t,t!1...,

v inn5«21v ~0!~ r̄ ,s,t,t!1v ~1!~ r̄ ,w,s,t,t!1...,

winn5«21w~0!~ r̄ ,s,t,t!1w~1!~ r̄ ,w,s,t,t!1...,

pinn5«22p~0!~ r̄ ,s,t,t!1«21p~1!~ r̄ ,w,s,t,t!1...,

where r̄ 5r /« is the stretched radial coordinate in the co
Here, the leading-order velocity field is axisymmetric, as
the previous asymptotic theories, but can change along
filament. There is no radial velocity at leading order. This
consistent with an axisymmetric leading order: e.g., an el
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tic core at leading order will behave like a Kirchhoff ellips
which would rotate on the ultra-short timet/«2 and have a
nonzero radial velocity at leading order.

Short wavelengths of order« are out of the scope of thi
theory: their dynamics would be on the timet̄ 5t/«2, would
use a stretched axial coordinates̄5s/« and was studied by
Widnall and Tsai19 in the linear regime around a circula
vortex ring.

If the vorticity is inside a vortex tube, the interface h
the following expansion:

d̄ t5d t/«5 d̄ t~0!~w,s,t,t!1«d̄ t~1!~w,s,t,t!1...

and its time-derivative is

ḋ t5]td̄
t1«] td̄

t5]td̄
t~0!1«~]td̄

t~1!1] td̄
t~0!!1... .

For a vortex bubble, one have the same expansion
db, and the expansions of the volume of the bubble and
the curvature of the free-boundary are

V b

«2 5V b~0!1«V b~1!1...,

k5«21k~0!1k~1!1... .

When the leading order is axisymmetric, it comes

V b

«2 5pE
0

2p

s~0!@ d̄b~0!#2ds1«pE
0

2p

~s~1!@ d̄b~0!#2

12s~0!d̄b~0!d̄cb~1!!ds1O~«2!, ~11!

k52
1

2d̄b~0!~s,t,t!

1

«
1

1

2

d̄b~1!~w,s,t,t!

@ d̄b~0!~s,t,t!#2

1
1

2
K ~0! cos~w!1

1

2

@ d̄b~1!~w,s,t,t!#ww

@d̄b~0!~s,t,t!#2
1O~«!,

~12!

whered̄cb(1) is the axisymmetric part ofd̄b(1)(w,s,t,t).

III. TWO-TIME-SCALE DYNAMICS OF AXIAL
VARIATIONS

The substitution of the previous expansions into E
~2!–~3! leads to a cascade of asymptotic equations as in
one-time analysis.1 In this section I give the two-time-scal
equations for the dynamics of axial variations at leading
der. It consists in the leading-order short-time axisymme
equations in the filament@Eqs. ~13!–~16!# and the leading-
order short-time@Eq. ~33!# and normal-time@Eq. ~32!# equa-
tions of motion of the centerline. In the first subsection t
leading-order equations of the short-time axisymmetric
namics in the filament are given. The leading-order sh
time asymmetric dynamics in the filament is slaved by
axisymmetric dynamics and is given in Appendix A. Th
motion of the centerline is slaved by this core dynamics a
its induced velocity is given in the next subsection. Finally
qualitative description of the two-time dynamics in the fil
ment is given.
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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A. The leading-order short-time axisymmetric
dynamics of axial variations in the filament

The leading-order equations of the short-time axisy
metric dynamics in the filament come from the axisymmet
part at leading and first orders. I will give these equations
this subsection.

1. Continuous vorticity field

The leading-order compatibility conditions of the on
time analysis1 become the dynamical equations of the a
symmetric part of the leading-order relative velocity fiel
i.e., of the axial core-variations.

a. The velocity form of the equations.At leading order

p~0!52E
r̄

` v ~0!2

r̄
d r̄1p~0!~`!, ~13!

and at first order

~ r̄ uc~1!! r̄1 r̄ wz
~0!50, ~14!

]v ~0!

]t
1z~0!uc~1!1w~0!vz

~0!50, ~15!

]w~0!

]t
1wr̄

~0!uc~1!1pz
~0!1w~0!wz

~0!50, ~16!

where z (0)5( r̄v (0)) r̄ / r̄ is the leading-order axial vorticity
uc(1) is the axisymmetric part of the radial velocity a
first order, p(0) is the leading-order pressure, andz
5*0

ss (0)(s8,t)ds8.
This system forp(0), v (0), w(0), anduc(1) is closed. It

gives the short-time-scale dynamics of the axial co
variations of axisymmetric shape. These equations are
same as the ones obtained by Souza12 for a straight filament.
They are the ‘‘long wave scaling’’ shallow water equatio
derived from studies of vortex breakdown of a straig
filament.20,12 Let us point out that in the studies of vorte
breakdown and swirling-jets, the velocity field is often no
dimensionalized usingG/ l , all lengths usingl, and the time
using l 2/G, wherel is the small characteristic length and
of the thickness size. From this point of view, theO(1)
wavelength of the asymptotic theory of vortex motion is
long wavelength and the short wavelength of the Tsai a
Widnall19 study is a usualO(1) wavelength.

At this order and on this short time the previous deriv
tion shows that the curvature of the filament has no effect
the dynamics of axial variations. This proves the intuition
Souza who pointed out~private communication! that the
equations for a straight filament might be relevant to
curved filament. For a curved filament they were first giv
in Margerit and Brancher.13

I will now give other useful forms of these equations.
b. The stream-function form of the equations.Let us de-

fine the meridional stream functioncc(1), with

uc~1!52
1

r̄
cz

c~1! , w~0!5
1

r̄
c r̄

c~1! ,

and introduce the following transformation:

K~0!5 r̄v ~0!, y5 r̄ 2,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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usually used to study these equations.20 In these new vari-
ables the previous system becomes

]K~0!

]t
22cz

c~1!Ky
~0!12cy

c~1!Kz
~0!50, ~17!

D2
]cc~1!

]t
12cy

c~1!D2cz
c~1!1

2

y
K~0!Kz

~0!22ycz
c~1!

3@y21D2cc~1!#y50, ~18!

whereD2cc(1)54ycyy
c(1) .

c. The Souza form of the equations.The previous equa
tions can also be written in the form12

]K~0!

]t
1

1

r̄
¹'cc~1!

•¹K~0!50, ~19!

Lcc~1!5 r̄ 2j~0!, ~20!

]j~0!

]t
1

1

r̄
¹'cc~1!

•¹j~0!1
2

r̄ 4 K~0!Kz
~0!50, ~21!

where ¹5(] r̄ ,]z), ¹'5(2]z ,] r̄), L5] r̄
22] r̄ / r̄ , and

2 r̄ j (0)52wr̄
(0) is the leading-order circumferential~azi-

muthal! vorticity.
The boundary conditions to these equations are the p

odicity betweenz50 andz5S(0), whereS(0) is the length of
the closed vortex,c r̄

c(1)/ r̄→0 and K(0)→G/2p at infinity,
and]cc(1)/] r̄ 50 and]K(0)/] r̄ 50 at r̄ 50.

d. The equations in the Von Mises variables.One can
replace the independent variables (t, r̄ ,s) by (t,cc(1),s) at
all point wherew(0)Þ0. In these Von Mises variables, th
previous system becomes the nonstationary Brag
Hawthorne~or Squire–Long! equation

Lcc~1!5 r̄ 2
]H~0!

]cc~1!2K~0!
]K~0!

]cc~1! ~22!

whereH(0)5p(0)1(v (0)21w(0)2)/2.

2. Discontinuous vorticity field
For a vortex with the vorticity inside a vortex tube th

interface dynamics has to be found and the previous eq
tions have to be completed. The leading order of the con
tion of continuity ~4! of the pressure on the interface yield

@@p~0!##50. ~23!

Here and in the following, I use the notation

@@ f ##[ f ~ d̄ t~0!1!2 f ~ d̄ t~0!2!

for the jump on the interface. This continuity of the leadin
order pressure means that the expression~13! for p(0) is cor-
rect even through the interface. The first order of the co
nuity of the normal velocity~7! yields

@@uc~1!##5 d̄z
t~0!@@w~0!##, ~24!

which can be written forcc(1) as

@@cz
c~1!##52 d̄ t~0!d̄z

t~0!@@w~0!##. ~25!

The axisymmetric part of the kinematic boundary con
tion ~6! at first order gives
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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]d̄ t~0!

]t
2uc~1!1w~0!d̄z

t~0!50, ~26!

where all velocity components are taken on the interfacr̄

5 d̄ t(0)6.
This system forp(0), v (0), w(0), uc(1), and d̄ t(0) is

closed.

3. Vortex ring bubble

For a vortex bubble the interface dynamics has to
found and the previous equations have to be completed.
leading-order of the axisymmetric part of the pressure ju
~9! is

p~0!~ d̄b~0!1!5S G

2p
D 2

Cp~s,t,t !

~ d̄b~0!!2
1p~0!~`!

5 P̄v1 P̄g0S V 0
b~0!

V b~0!D k

2
Ȳ

d̄b~0!
, ~27!

where

Cp~s,t,t !52S 2pd̄b~0!

G
D 2E

d̄b~0!

` v ~0!2
~ r̄ ,s,t,t !

r̄
d r̄.

Equation~27! is the equation of the thicknessd̄b(0) of the
bubble.

The leading-order for axisymmetric part of the dynam
cal equation of the free-boundary~10! is

]d̄b~0!

]t
2uc~1!1w~0!d̄z

b~0!50, ~28!

where all velocity components are taken on the fre
boundaryr̄ 5 d̄b(0)1. The bubble allows to have a solution o
the equation of continuity~14! in the form

uc~1!5
Dc~1!~s,t,t !

r̄
1uvc~1!,

where uvc(1) is regular atr̄ 50. As the thicknessd̄b(0) is
given by Eq.~27!, Eq. ~28! is indeed the equation forDc(1).

This system forp(0), v (0), w(0), uvc(1), Dc(1), andd̄b(0)

is closed.

B. The two-time-scale dynamics of the centerline

In the previous subsection the short-time-scale dyna
cal equations of the axial core-variations were given for
velocity field in the core. In this subsection the dynamic
equation of the induced velocity of the centerline is given
comes from the matching law of the inner and outer veloc
fields. This motion of the centerline is slaved by the leadin
order core dynamics.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



te
o

lu

-
e

e
o

d

is
a-
n

the

-

le-
-
he

ter

d-

e

4411Phys. Fluids, Vol. 14, No. 12, December 2002 Axial core-variations of axisymmetric shape
1. Combined form of the equation

At leading order the outer velocity is

v~x!5
G

4p E s~0!~s,t !t~s,t !~x2X~0!~s,t !!

ux2X~0!~s,t !u3 ds. ~29!

This is the velocity induced by the vorticityv5d(x
2X(0))t concentrated on the leading-order centerlineX(0),
where d(x2X(0)) is the delta-function onX(0)(s,t). The
axial core-variations have no leading-order effect in the ou
region. This results of the assumption that fast oscillations
the centerline are of amplitude« as stated in the form of the
expansion ofX in Sec. II.

At first order the matching law between this outer so
tion and the inner solution~found in Sec. III A, and Appen-
dix A! yields

] tX
~0!~s,t !1]tX

~1!~s,t,t !

5A~s,t !1G
K ~0!~s,t !

4p F logS S~0!

« D 211Cv1CwGb~s,t !,

~30!

where

A~s,t !5
G

4p E
2p

1p

ads8,

a5s~0!~s1s8,t !F t~s1s8,t !3g

ugu3
2

K ~0!~s,t !b~s,t !

2ul~s,s8,t !u G ,
g5X~0!~s,t !2X~0!~s1s8,t !,

and l(s,s8,t)5*s
s1s8s (0)(s* ,t)ds* . In this Eq. ~30!,

Cv(s,t,t) and Cw(s,t,t) are known functions, which de
scribe the circumferential and axial evolution of the inn
velocity in the core:

Cv~s,t,t !5
1

2
1 lim

r̄→1`
S 4p2

G2 E
0

r̄
r̄ 8v ~0!2

~ r̄ 8,s,t,t !dr̄8

2 log r̄ D ,

Cw~s,t,t !52
1

2 S 4p

G D 2E
0

`

r̄ w~0!2
~ r̄ ,s,t,t !dr̄.

Equation~30! extends the Callegari and Ting1 equation of
vortex filament motion to axial core-variations of th
leading-order velocity field. It holds both for a continuous
a discontinuous vorticity field.

Any initial condition that does not satisfy the induce
asymmetric flow field@Eq. ~A8! in Appendix A#, and Eq.
~30! will need a three-time-scale analysis (t̄ 5t/«2,t,t).
These small-amplitude oscillations of order«2 have already
been introduced by Ting and Tung21 and Gunzburger22 to
study a straight vortex filament with an initial velocity that
different from the potential background velocity on the fil
ment. An example of such a curved filament, that does
satisfy the induced asymmetric flow field@Eq. ~A8! in Ap-
pendix A#, is given in Margerit and Brancher.13
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The regime studied in this section is not the same as
one considered by Ting and Klein,23 who studied axial core-
variations on anopenvortex filament by means of a single
time-scalet and double-axial-scale (s,j̃5«s) analysis. For
an openfilament, the double-time-scale analysis (t,t5t/«)
induces that the normal-timet behavior of a core-variation
perturbation, which evolves at short-time-scalet5t/«, is to
reach the far-distancej̃5«s of the Ting and Klein23 regime.
Thus, except if the open filament is periodical, a doub
time-scale analysis (t,t5t/«) coupled to a double-axial
scale (s,j̃5«s) analysis would be needed to describe t
dynamics of the open filament.

For a vortex bubble, the matching law between the ou
solution and the inner solution yields the equation

] tX
~0!~s,t !1]tX

~1!~s,t,t !

5A~s,t !1G
K ~0!~s,t !

4p F logS S~0!

« D
211Cv1Cw1W̄eGb~s,t !, ~31!

whereW̄e(s,t,t)54p2d̄b(0)(s,t,t)Ȳ/G2. Here, the inner ve-
locity field of Sec. III A and Appendix A was used. The ad
ing term in Eq. ~31! as regard of Eq.~30! is due to the
difference between the inner velocity fields.

2. Time averaging and splitting form of the equation

The t-average of a functionf (t,t), is denotedMf , and
is defined by

Mf 5 lim
T̃→1`

1

T E
«21t

«21t1T̃
f ~t,t !dt,

whereT̃ is an intermediate variable:t!T̃!t. Thet-average
of Eq. ~30! yields the leading-order equation of motion of th
filament in the normal-time scale

] tX
~0!~s,t !5A~s,t !1G

K ~0!~s,t !

4p F logS S~0!

« D 21

1MCv1MCwGb~s,t !, ~32!

where

MCv5
1

2
1 lim

r̄→1`
S 4p2

G2 E
0

r̄
r̄ 8M~v ~0!2

!dr̄82 log r̄ D ,

MCw52
1

2 S 4p

G D 2E
0

`

r̄M~w~0!2
!dr̄.

The subtraction of Eq.~32! from ~30! leads to the equation
for X(1) in the short-time scale:

]tX
~1!~s,t,t !5

GK ~0!~s,t !

4p
~DCv1DCw!b~s,t !, ~33!

where
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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DCv5
4p2

G2 E
0

`

r̄ @v ~0!2
2M~v ~0!2

!#dr̄,

DCw5
1

2 S 4p

G D 2E
0

`

r̄ @w~0!2
2M~w~0!2

!#dr̄.

The first-order equation of motion of the filament in th
normal-time scale, i.e., the equation for] tX

(1), would come
from the matching at next order. An important result sta
by Eq. ~33! is that the fast oscillations of small«-amplitude
of the centerline are only in the binormal direction and a
proportional to the local curvature.

C. The two-time-scale dynamics of axial variations in
the filament

The previous subsection shows that we need to know
normal-time averageM(v (0)2) andM(w(0)2) of the square
of the velocity components to find the normal-time evoluti
of the centerline. I will now give qualitative ideas of the fu
two-time-scale dynamics.

Let us first assume thatM(v (0)2)5M(v (0)2) and that
the axial velocity also satisfies this property. Let us have
conjecture that core equations~13!–~16! give the dynamics
of the short-time variations around this averaged s
M(v (0)) but do not give the dynamics of this averaged st
and that these variations are bounded. We need to look a
axisymmetric part of the equations at second order to ext
the needed dynamical equations of the averaged state.

The second-order equations@Eqs. ~B1!–~B4! in Appen-
dix B# is a linear system of equations forpc(1), vc(1), wc(1),
anduc(2). This system gives the dynamics of the first-ord
axisymmetric axial variations. It has inhomogeneous ter
and nonconstant coefficients, which depend only on
leading-order velocity field is satisfied. Let us also have
second conjecture that this linear operator is not uniqu
invertible. The Fredholm alternative implies that this inh
mogeneous linear system of equations has bounded solu
only if a compatibility condition for the leading-order veloc
ity field. This compatibility condition is the dynamical equ
tion of the leading-order time-averaged state.

More theoretical and numerical works have to be done
prove these two conjectures. I will not do this work in th
paper. Nevertheless, as a first step, Sec. IV gives one-
solutions of the equations and Sec. V studies the two-tim
scale dynamics of small axial variations around these o
time-scale solutions. The study of this linearized leadin
order operator may also help to study the linear system
equations forpc(1), vc(1), wc(1), anduc(2) and to carry out its
Fredholm alternative.

IV. THE ONE-TIME FILAMENT SOLUTIONS

In this section I give solutions to the one-time equatio
These solutions will be used in Sec. V to study the two-tim
scale dynamics of small axial variations around this b
flow.

If the short-time scale derivative is removed from Eq
~13!–~16! or from the equivalent equations~17!–~18!, these
equations become compatibility equations for the one-t
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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solution at leading order, which may be called a qua
stationary solution of these equations. Leading-order velo
fields without axial variations anduc(1)50 are solutions of
these leading-order compatibility conditions.

Appendix C considers the uniqueness of these com
ibility conditions. The study of small perturbations aroun
the solutions without axial variations seems to indicate t
they are the unique solutions to these compatibility con
tions. Appendix D considers the uniqueness of the comp
ibility conditions at second order. Assuming that the comp
ibility conditions at first order have the only solution witho
axial variations it is found that these compatibility conditio
at second order also have a unique solution, which is giv
This solution is the one introduced by Margerit17 to general-
ize the Callegari and Ting theory1 at next order.

A. The one-time equations

I now consider the leading-order velocity fields witho
axial variations. For a closed filament, thes-average of
quasi-stationary~one-time! solutions of axisymmetric equa
tions at second order@Eqs. ~B1!–~B4! in Appendix B#
satisfies1

]v ~0!

]t
2 n̄z r

~0!5
1

2
r̄ z~0!

Ṡ~0!

S~0! , ~34!

]w~0!

]t
2 n̄

1

r̄
@ r̄ wr̄

~0!# r̄5
1

2
r̄ 3S w~0!

r̄ 2 D
r̄

Ṡ~0!

S~0! , ~35!

where the leading-order quasi-stationary velocity is witho
axial variations anduc(1)50 as previously stated. Equation
~32!, ~34!, and ~35! derived by Callegari and Ting1 are a
complete set of equations for the one-time solution, which
without axial variations. Thisone-timesolution is in some
sense the generalization to vortex filaments with center
of any shape of thestationarycircular vortex ring solution in
a translative frame.

B. The one-time solutions in dimensionless form

Callegari and Ting1 used a special transformation to fin
the solutions of Eqs.~32!, ~34!, and~35!. In the remaining of
this section the core-functionCv(t) andCw(t) are given and
displayed in a simple way. These expressions of the c
functions and Eq.~32! are a complete set of equations for th
one-time motion of the centerline of the filament.

Let us define the following similarity functions

v* ~0!5v ~0!d̄/G,

z* ~0!5z~0!d̄2/G,

w* ~0!5w~0!
d̄2

Gd̄0

S S0
~0!

S~0!~ t !
D 22

,

K* ~0!5K~0!/G,

c* c~1!5cc~1!
1

Gd̄0

S S0
~0!

S~0!~ t !
D 22

,

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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where d̄0 , S0
(0) are the initial thickness and length of th

vortex andd̄, S(0) their values at timet.

1. Inviscid fluid

If the fluid is inviscid (n̄50) the solutions are in the
form24

v* ~0!5v0* ~h!,

w* ~0!5w0* ~h!,

where h5 r̄ / d̄, (v0* (h),w0* (h)) are the initial velocity
fields, andd̄(t) is the«-stretched thickness of the core

d̄2~ t !5 d̄0
2~S0

~0!/S~0!~ t !!,

whereS0
(0) is the initial length of the filament. The associat

core functions are

Cv~ t !5Cv~0!2 log~ d̄~ t !/ d̄0!,

Cw~ t !5Cw~0!~S0
~0!/S~0!~ t !!3,

whereCv(0) andCw(0) are the associated initial core co
stant:

Cv~0!5
1

2
1 lim

h→1`
S 4p2E

0

h
h8v0*

2~h8!dh82 logh D
2 log d̄0 ,

Cw~0!522p2E
0

`

hw0*
2~h!dh.

2. Viscous fluid

If the flow is viscous (n̄Þ0) the solutions of Eqs.~34!–
~35! and ~30! are in the form25

v* ~0!5
1

h F 1

2p
~12e2h2

!1e2h2

(
n51

`

Dn* Pn~h2!1n̄
2nG ,

w* ~0!5FSw~0!

p
e2h2

12e2h2

(
n51

`

Cn* Ln~h2!1n̄
2nG ,

whereh5 r̄ / d̄, and d̄(t) is the «-stretched thickness of th
core

d̄2~ t !5 d̄0
2S S0

~0!

S~0!~ t !
D 1n̄ ,

1n̄511
d̄ n̄

2

d̄0
2

,

d̄ n̄
254n̄E

0

t S~0!~ t8!

S0
~0! dt8.

Here,Ln are the Laguerre polynomials,Pn(h2)5Ln21(h2)
2Ln(h2), g is the Euler’s constant,d̄ n̄ is the diffusion-added
«-stretched thickness of the core, and (Cn* ,Dn* ) are the Fou-
rier components of the initial axial velocity and tangent
vorticity
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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Cn* 5E
0

`

w0* ~h!Ln~h2!h dh,

Dn* 5E
0

`

z0* ~h!Ln~h2!h dh,

C0* 5Sw~0!/2p,

D0* 51/2p.

Sw(0)5m0 /(Gd̄0) is the initial swirl number, wherem0 is
the initial axial flux. The swirl numberSw(t) at time t is
defined bySw(t)5m(t)/(Gd̄), wherem(t) is the axial flux
at time t. The associated core functions are

Cv~ t !52 log d̄1
1

2
~11g2 log 2!

14p2 (
~n,m!PN2\~0,0!

Dn* Dm* Anm

n1m
1n̄

2~n1m! ,

Cw~ t !522S d̄0

d̄
D 2S S0

~0!

S~0!~ t !
D 4FSw

2 ~0!

18p2 (
~n,m!PN2\~0,0!

Cn* Cm* Anm1n̄
2~n1m!G ,

where

Anm5E
0

`

e22xLn~x!Lm~x!dx5
~n1m!!

n!m!2m1n11 .

In the inviscid limit n̄→0, we recover the inviscid velocity
field previously given. This clearly shows the continuity
the analyses for the Navier–Stokes and Euler equation
the asymptotic ansatz based on the small slenderness ra

3. Similar vortex core

For a viscoussimilar vortex core1

v* ~0!5
1

2ph
~12eh2

!,

w* ~0!5
Sw~0!

p
e2h2

,

Cv~ t !52 log d̄~ t !1
1

2
~11g2 log 2!,

Cw~ t !522S d̄0

d̄
D 2S S0

2

S~0!~ t !
D 4

Sw
2 ~0!.

The relative velocity field of this similar vortex also depen
only on one parameter: the initial swirl numberSw(0) and is
independent of any parameter if the axial velocityw* (0) is
divided by this parameter.

4. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube, th
s-average of quasi-stationary~one-time! solutions of the axi-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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symmetric part of the kinematic boundary condition at s
ond order@Eq. ~B6! in Appendix B# satisfies

dG t~0!52
1

2
d̄ t~0!

Ṡ~0!

S~0! . ~36!

Here, I used̂ s (0)uc(2)&52 r̄ Ṡ(0)/2, where^ & denotes the
s-average, as can be found from thes-average of the axisym
metric part of the continuity equation at second order@Eq.
~B2! in Appendix B#. It comes

~ d̄ t~0!~ t !!25~ d̄0
t~0!!2~S0

~0!/S~0!~ t !!. ~37!

This equation is coherent with the functiond̄2(t)5 d̄0
2

(S0
(0)/S(0)(t)) previously introduced to describe the thickne

of the continuous vorticity field in an inviscid fluid (n̄50).
In this case I choose the thicknessd̄ of the vortex to be the
interface thicknessd̄ t. For a Rankine vortex core with a un
form axial jet:

v0* ~h!5H h

2p

1

2ph

, w0* ~h!5H Sw~0!/p if h,1

0 if h.1.

~38!

It comes Cv(t)53/42 log d̄ and Cw(0)524Sw(0)2. The
relative velocity field of this Rankine vortex core with
uniform axial jet depends only on one parameter: the ini
swirl numberSw(0) and is independent of any parameter
the axial velocityw* (0) is divided by this parameter.

V. TWO-TIME-SCALE DYNAMICS OF AXIAL
VARIATIONS IN THE SMALL AMPLITUDE LIMIT

In this section, I consider small axisymmetric axi
variations around the one-time scale solutions~32!, ~34!, and
~35!, which is the base flow. The leading-order equations
these perturbations will be found as a linearization near
base flow of the double-time-scale equations for the c
~17!, ~18!, and for the filament motion~32!–~33!. This gives
the equations@Eqs.~39!–~41!# of the dynamics of the smal
axial variations around the one-time base flow. From th
equations the eigenvalue equations for linear Fourier mo
@Eqs. ~59!–~61!# are given for the stream function. This e
genvalue problem is then solved for both a Rankine an
similar core.

This study is more general than previous ones beca
the vortex filament of the base flow is not restricted to
circular26,27,9nor straight.28–31 In the studies28–30 of the sta-
bility of straight vortex filament, the characteristic lengt
scale that is used is the one of the thickness of the filam
and so the long-wavelength limit has to be carried out
obtain ourO(1) wavelength regime, in which the characte
istic length-scale that is used is the one of the radius
curvature of the filament.

This study is a linear stability analysis in the small thic
ness« limit and in the moving frame of the perturbed flow
The coordinates are local coordinates in this frame and
not local coordinates to the base flow. The perturbation
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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the base flow, is split into the relative velocity field and t
filament motion. In the previous analysis the perturbat
that is used is the one of the absolute velocity field and is
superposition of axisymmetric modesei nsei vt and bending
modese6 i wei nsei vt, where the coordinates are local to th
base flow. In the case of a circular vortex ring, the results
my analysis can be derived from the one of Kopiev a
Chernyshev9 by: ~i! deriving the velocity field from their
displacement field;~ii ! writing this field in the usual coordi-
nates (r̄ ,w,s) of the moving frame; and~iii ! splitting the
velocity perturbation into the relative velocity and the fil
ment velocity. I prefer to derive it in a simpler and straigh
forward way as follows.

A. Base flow and small perturbations

I introduce a small axisymmetric perturbation

~ ũc~1!,ṽ ~0!,w̃~0!,p̃~0!,c̃c~1!,K̃~0!,X̃~0!,X̃~1!!

of a one-time flow without axial variations, denoted b
(uI c(1)50,vI (0),wI (0),pI

(0),cI
c(1),KI (0),X(0),X(1)50):

cc~1!5cI
c~1!1mc̃c~1!,

K~0!5KI ~0!1mK̃~0!,

X~1!5mX̃~1!.

For a vortex with the vorticity inside a vortex tube, th
interface function is also unknown. Its perturbation and
one of the pressure are given by

d̄ t~0!5dĪ t~0!1md! t~0!,

p~0!5pI
~0!1m p̃~0!.

The base flow is the one-time scale solution given
Sec. IV and is without axial variations. Here, one has
restrict the form of the perturbations to the axisymmet
axial variations, for they are the perturbations we are in
ested by. In that sense I will not consider normal-time p
turbations without axial variations of the relative veloci
field or of the centerline. This induces the two followin
assumptions. The perturbations of the relative velocity fi
have axial core-variations and are assumed to have null a
average. With this assumption and with the uniqueness s
of Appendix C we deduce that these perturbations have
normal-time-scale dynamics, i.e.,M( ṽ (0))50 and
M(w̃(0))50. Moreover as the motion of the centerline
leading orderX(0) is a normal-time-scale dynamics I assum
that the leading-order centerline is not perturbed, i.e.,X̃(0)

50. These two assumptions are not restrictive; they o
means that in the perturbation we do not have the bend
modes of the one-time scale, which have already been s
ied elsewhere.10,11
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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B. Two-time-scale linear equations of small axial
variations

1. Continuous vorticity field

From Eqs.~17!–~18! we deduce that at first order in th
small amplitudem the perturbation of the relative velocit
field satisfies

]K̃~0!

]t
22KI y

~0!
]c̃c~1!

]z
12cI y

c~1!
]K̃~0!

]z
50, ~39!

D2
]c̃c~1!

]t
1

2

y
KI ~0!

]K̃~0!

]z
1GS ]c̃c~1!

]z
D 50, ~40!

where

G52cI y
c~1!D228ycI yyy

c~1! .

These equations give the short-time dynamics of the sm
amplitude axial variations in the filament.

At first order in m the t-averagesM(v (0)2) and
M(w(0)2) are given by M(v (0)2)5M(vI (0)212vI (0)ṽ (0))
5vI (0)212vI (0)M( ṽ (0))5vI (0)2, as M( ṽ (0))50, and
M(w(0)2)5wI (0)2. This means that the small perturbations
the relative velocity field have no normal-time-scale dyna
ics as it has previously been assumed. From Eqs.~32! we can
check that the leading-order centerline is not perturbed,
X̃(0)50, as it has previously been assumed.

From Eqs.~33! we deduce that the perturbation of th
filament velocity satisfies

]tX̃
~1!~s,t,t !5

GK ~0!~s,t !

4p
~DCv1DCw!b~s,t !, ~41!

where

DCv5
4p2

G2 E
0

`

2r̄vI ~0!ṽ ~0! dr̄,

DCw5
1

2 S 4p

G D 2E
0

`

2r̄ wI ~0!w̃~0! dr̄.

This shows that for a curved vortex filament the pertur
tions with axial variations induce small oscillations of amp
tude« of the centerline and that these perturbations are in
binormal direction and proportional to the curvature. T
system of Eqs.~39!–~41! gives the dynamics of the sma
axial variations around the one-time base flow.

2. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube, th
continuity of the leading-order pressure~23! becomes

d d p̃~0!c c52
d̃ t~0!

dĪ t~0!
d dvI ~0!2c c, ~42!

where I used Eq.~13! to haved dpI r̄
(0)c c5 d dvI (0)2c c/ d̄ t(0). Here

and in the following I use the notation

d d f c c[ f ~dĪ t~0!1!2 f ~dĨ t~0!2!
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for the jump on the interface. The continuity of the norm
velocity ~25! becomes

d dc̃z
c~1!c c52dĨ t~0!d dwI ~0!c cd! z

t~0! . ~43!

The kinematic boundary conditions~26! becomes

]d! t~0!

]t
2ũc~1!1wI ~0!d! z

t~0!50, ~44!

where all velocity components are taken on the free bou
ary r̄ 5dĪ t(0)6.

C. Dimensionless form of the linear equations

I define the following similarity functions for the pertur
bation

y* 5h25y/ d̄2,

t* 5Gt/ d̄0
2,

z* 5zd̄/ d̄0
2,

K̃* ~0!5K̃~0!/G,

c̃* c~1!5c̃c~1!/~Gd̄ !,

ṽ* ~0!5 ṽ ~0!d̄/G,

w̃* ~0!5w̃~0!d̄/G,

X̃* b~1!5X̃~1!
•b~s,t !/~ d̄0

2K ~0!~s,t !!.

For a vortex with the vorticity inside a vortex tube I als
define

d! * t~0!5d! t~0!/dĪ t~0!,

p̃* ~0!5~dĪ t~0!!2p̃~0!/G2.

These similarity functions are now used to simplify the sy
tem of linear equations for the small axial variations.

1. Continuous vorticity field

With these functions the system~39!–~41! becomes

]K̃* ~0!

]t*
22KI y*

* ~0! ]c̃* c~1!

]z*
12RcI y*

* c~1! ]K̃* ~0!

]z*
50, ~45!

D* 2
]c̃* c~1!

]t*
1

2

y*
KI * ~0!

]K̃* ~0!

]z*
1RG* S ]c̃* c~1!

]z* D 50,

~46!

]X̃* b~1!

]t*
5

1

4p
~DCv1DCw!, ~47!

where

G* 52cI y*
* c~1!D* 228y* cI y* y* y*

* c~1! ,

R5
d̄0

d̄
S S0

~0!

S~0!~ t !
D 2

,
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DCv54p2E
0

`

KI * ~0!
K̃* ~0!

y*
dy* ,

DCw516p2E
0

`

RwI * ~0!
]c̃* c~1!

]y*
dy* ,

andD* 254y* ]y* y* .

2. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube, Eq
~42!–~44! become

d d p̃* ~0!c c52 d̃* t~0!d dvI * ~0!2c c, ~48!

d d]c̃* c~1!

]z* c c52Rd dwI * ~0!c c ]d! * t~0!

]z*
, ~49!

]d! * t~0!

]t*
1

]c̃* c~1!

]z*
1RwI * ~0!

]d! * t~0!

]z*
50. ~50!

Equations~13! and ~16! become

p̃* ~0!52E
Ay*

` KI * ~0!K̃* ~0!

y* 2 dy* , ~51!

2
]c̃y*

* c~1!

]t
14RS 2cI y* y*

* c~1! ]c̃* c~1!

]z*
1cI y*

* c~1! ]2c̃* c~1!

]y* ]z* D
1

] p̃* ~0!

]z*
50. ~52!

As the axial flux satisfies

m~ t !5S S0
~0!

S~0!~ t !
D 2

m0 ,

the swirl number satisfiesSw(t)5RSw(0), which means that
R is the ratio Sw(t)/Sw(0) if the axial flux is not zero:
Sw(0)Þ0.

If the base flow is a Rankine vortex core with a unifor
axial jet or a similar vortex, I divide both the axial velocit
wI * (0) andcI * c(1) by the initial swirl numberSw(0): thebase
flow is then independent of any parameter and in Eqs.~45!–
~47! R becomes the swirl numberSw(t) at t. For these vor-
tices the stability analysis only depends on this o
parameterSw(t) and I carry out this study in the following

D. Eigenvalue equations for linear Fourier modes

I look for solution of the linear equations~45!–~47! in
the form

c̃* c~1!5Ĉ~y* ,Sw~ t !!e2 ivn* t* 1 inẑ, ~53!

K̃* ~0!5K̂~y* ,Sw~ t !!e2 ivn* t* 1 inẑ, ~54!

X̃* b~1!5 iX̂b~Sw~ t !!e2 ivn* t* 1 inẑ, ~55!

wherevn* 5vnd̄0
2/G and ẑ52pz* d̄0

2/(S(0)d̄). For a vortex
with the vorticity inside a vortex tube I also look for th
perturbation of the interface function and of the pressure
the form
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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d! * t~0!5dC t~Sw~ t !!e2 ivn* t* 1 inẑ,

p̃* ~0!5 p̂~y* ,Sw~ t !!e2 ivn* t* 1 inẑ.

1. Continuous vorticity field

The linear system satisfied by the eigenfunctions is

K̂522lKI y*
* ~0!ĉ/g, ~56!

d2ĉ

dy* 22
l

2gy* 2 KI * ~0!K̂1
2lSw

g
cI y* y* y*

* c~1! ĉ50, ~57!

X̂b5
p

vn*
S E

0

`

KI * ~0!
K̂
y*

dy* 1E
0

`

4SwwI * ~0!
dĉ

dy*
dy* D ,

~58!

wherel52pnd̄0
2/(S(0)d̄vn* ) and

g5122lSwcI y*
* c~1! .

The substitution ofK̂ from Eq. ~56! into Eq. ~57! gives
the following eigenvalue problem forĉ andl:

d2ĉ

dy* 2 1G~y* ,l,Sw!ĉ50, ~59!

dĉ

dy* ~y* →`!50, ~60!

ĉ~y* 50!50, ~61!

where

G~y* ,l,Sw!5l2
KI * ~0!KI y*

* ~0!

g2y* 2 12lSw

cI y* y* y*
* c~1!

g
.

From Eq. ~59! it comes ĉ5y* 1O(y* 2) near 0, whereI
used a normalization condition to select any eigenfunction
this homogeneous equation.

2. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube, th
linear system must be completed by

d d p̂c c52dC td dvI * ~0!2c c, ~62!

d dĉ c c52Swd dwI * ~0!c cdC t, ~63!

p̂52E
Ay*

` KI * ~0!K̂
y* 2 dy* , ~64!

p̂54SwS cI y* y*
* c~1!ĉ2cI y*

* c~1! dĉ

dy* D 2
2

l

dĉ

dy*
, ~65!

and by the kinematic boundary condition

dC t5lĉ~1,Sw!/g, ~66!

where all velocity components are taken on the interfacr̄

5dĪ t(0)6.
For a Rankine vortex core with a uniform axial jet,G is

given by
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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G5H L2/y* if y* ,1,

0 if y* .1,

where

L25
l2

4p2~12lSw /p!2 ,

and for a similar vortex,G is given by

G5
l2

4p2

~12e2y* !e2y*

y* 2g2 1
lSw

p

e2y*

g
,

whereg512lSwe2y* /p.

E. Examples of solutions

In this subsection I solve the eigenvalue equations fo
Rankine and a similar vortex with a uniform axial jet.

1. Rankine vortex core with a uniform axial jet

For a Rankine vortex core with a uniform axial jet, th
solution of the linear system~56!–~61! is

d̄S~0!vn*

2nd̄0
2

5
1

l/p
5Sw6

1

j 0i

,

d̂ t52pJ1~2L!,

ĉ5H hJ1~2Lh!

L
if h,1,

J1~2L!/L if h.1,

dĉ

dy*
5H J0~2Lh! if h,1,

0 if h.1,

K̂5H 22hJ1~2Lh! if h,1,

0 if h.1,

p̂5H 2
J0~2Lh!

Lp
if h,1,

0 if h.1,

X̂b52
1

Lvn*
~J2~2L!24SwJ1~2L!!,

whereJ0 , J1 are Bessel functions of the first kind, andj 0i is
the i th zero of the Bessel functionJ0 . The frequencyvn of
these oscillations is

vn5n~vSw6v i
0!, ~67!

where

vSw52GSw /~ d̄S~0!!,

v i
052G/~ d̄S~0! j 0i !.

Without axial flux @Sw(t)50# the shape of the filamen
and of the axial variations of the core are given by

X~0!5XO ~0!1«2m~d̄0!2X̂b~0!cos~nẑ!sin~nv i
0t!

3K ~0!~s,t !b~s,t !, ~68!
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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d̄ t~0!5dĪ t~0!12md̄0dC t~0!cos~nẑ!cos~nv i
0t!, ~69!

with the associated velocity field

K~0!5KI 12mK̂~y* ,0!cos~nẑ!cos~nv i
0t!, ~70!

cc~1!52mĉ~y* ,0!sin~nẑ!sin~nv i
0t!. ~71!

The selected first eigenmode of the velocity field
given in Fig. 1 and the associated core-thickness and ce
line evolutions are given in Fig. 2.

This result generalizes, to a vortex filament with a ce
terline of any shape, the bulging modes found by Kopiev a
Chernyshev9 on a perturbed vortex of circular centerline.
the peculiar case of a perturbed vortex ring with a circu
centerline, the modes found in this theory are the same a
their theory. For example, the interface disturbance of th
bulging modes was given in Kopiev and Chernyshev9 in the
absolute frame with help of thedisplacement fieldrepresen-
tation and one can show that it corresponds to the sa

FIG. 1. The first eigenmodel1 /p52.39 of a perturbed Rankine vortex cor

without swirl (Sw50). The solid line isĉ(y* ,0), the dotted line isdĉ/dy* ,

and the dashed line isK̂(y* ,0).

FIG. 2. Fast axial-core oscillations~moden54) of a vortex filament with a
perturbed Rankine vortex core without swirl and the induced filament os
lations.~a! Initial variation of the core without perturbation of the filamen
evolution on~b! one-fourth of the period,~c! half of the period,~d! three-
fourths of the period.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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4418 Phys. Fluids, Vol. 14, No. 12, December 2002 Daniel Margerit
binormal perturbation of the centerline and the same th
ness perturbation as I found. In my approach it is easy
understand that the fast-oscillations of the centerline ar
the binormal direction as the core of the vortex is known
be taken into account by core-functions coefficientsCv and
Cw in the binormal term of the equation of motion of Call
gari and Ting.1 It is also easy to see the consistence of
generalization with the theory of Callegari and Ting1 and of
most studies of vortex dynamics as I use the same coo
nates as most authors and I give the velocity field. In t
sense this approach also completes the one of Kopiev
Chernyshev,9 who introduced their own interesting coord
nates and give the components of the displacement field
some components of the velocity field on their special co
dinates. The frequency of the bulging modes are found to
the same as the one they found for the perturbed vortex
with a circular centerline, provided thatG/( d̄S(0)) is used to
have a dimensionless frequency. My approach is restricte
axisymmetric perturbations: the bulging modes on the sh
time t and the bending modes on the normal-timet. Kopiev
and Chernyshev9 considered all nonshort wavelength pertu
bations and so also have the ultra-short-timet̄ dynamics of
nonaxisymmetric perturbations on the vortex ring with a c
cular centerline.

This study also generalizes, to a vortex filament with
centerline of any shape, the bulging modes found on a
turbed straight filament28,30 in the long-wavelength limit. In
the peculiar case of this straight filament the result is con
tent with their long-wavelength limit for the axisymmetr
and bending modes.

2. Similar vortex

For a similar vortex, Eq.~59! gives ĉ5c01c1y*
1O@exp(2y* )# at infinity, wherec0 and c1 are two con-
stants. For any value ofl, the solution of Eq.~59! and ĉ

;y* near 0 asymptotically reaches a constantĉy* (y*
→`), that is zero only for an infinity number of selecte
valuesl i of l. I use a shooting method and a Runge–Ku
solver to find these eigenvaluesl i(Sw). The frequencyvn of
these oscillations is

vn5
2Gn

d̄S~0!

1

l i~Sw!/p
. ~72!

Without axial flux (Sw50,) it gives l1 /p563.1,
l2 /p566.0, and l3 /p569.1. The first three selecte
eigenmodes are given in Figs. 3, 4, and 5.

With Sw50.1, it gives l1 /p5(23.3569,2.7520) and
l2 /p5(28.4073,4.4456). The selected first eigenmo
l1 /p52.7520 is given in Fig. 6.

VI. ONE-TIME VORTEX RING BUBBLE

In this section I give the one-time equations of a vort
ring bubble without axial variations. A special transformati
is then introduced to solve the core equations and the s
tions to these equations are given. This gives coupled e
tions @Eqs.~79!–~80!# for the motion of the centerline of th
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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vortex bubble and for the bubble thickness dynamics. Th
equations are used to study a circular vortex ring bubble
to compute the motion of a vortex ring bubble of elliptic
shape. Finally the ultra-fast oscillations of a vortex rin
bubble are studied on the ultra-short time scale.

A. The one-time equations

The leading-order velocity fields without axial variation
and uc(1)50 ~and thusD (1)50) are also solutions of the
leading-order compatibility conditions~13!–~16! and ~27!–
~28! in the case of a vortex bubble. The non-axial variatio
of the thicknessd̄b(0)(s,t)5 d̄b(0)(t) of the bubble gives the
simplificationVb(0)5S(0) ( d̄b(0))2 in Eq. ~11!.

For a closed vortex ring bubble, thes-average of the
axisymmetric part of the continuity equation at second or
@Eq. ~B2! in Appendix B# gives

^s~0!uc~2!&52
Ṡ~0!r̄

2
1

Dc~2!~ t !S~0!

r̄
,

where^ & denotes thes-average. Here,Dc(2)(t)Þ0 is allowed
because a singularity can exist atr̄ 50 and is required to
satisfy thes-average of Eq.~10!:

Dc~2!~ t !5 d̄b~0!S ]d̄b~0!

]t
1

1

2

Ṡ~0!

S~0! d̄b~0!D , ~73!

whered̄b(0) is given by Eq.~27!.

FIG. 3. The first eigenmode of a similar vortex without swirl (Sw50). The

solid line is ĉ(y* ,0), the dotted line isdĉ/dy* , and the dashed line is

K̂(y* ,0). The associated filament eigenmode isX̂b520.096.

FIG. 4. The second eigenmode of a similar vortex without swirl (Sw50).

The solid line isĉ(y* ,0), the dotted line isdĉ/dy* , and the dashed line is

K̂(y* ,0).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Thes-average of quasi-stationary~one-time! solutions of
axisymmetric equations at second order@Eqs. ~B1!–~B4! in
Appendix B# satisfies

]v ~0!

]t
2 n̄z r̄

~0!5
1

2
r̄ z~0!F Ṡ~0!

S~0!2
2Dc~2!~ t !

r̄ 2 G , ~74!

]w~0!

]t
2 n̄

1

r̄
@ r̄ wr̄

~0!# r̄5
1

2
r̄ 3S w~0!

r̄ 2 D
r̄

Ṡ~0!

S~0!2 r̄ wr̄
~0! Dc~2!~ t !

r̄ 2 ,

~75!

where the leading-order quasi-stationary velocity is with
axial variations anduc(1)50 as previously stated. Equation
~31!, ~27!, ~73!, ~74!, and ~75! are a complete set of equa
tions for the one-time solution.

B. Transformation of the equations

I now solve Eqs.~73!–~75!. I use the following transfor-
mation first introduced by Callegari and Ting1 ~often referred
as the transformation of Lundgren32!:

t15E
0

t

S~0!~ t8!dt8,

j5 r̄AS~0!~ t !,

W~j,t1!5S~0!~ t !w~0!,

FIG. 5. The third eigenmode of a similar vortex without swirl (Sw50). The

solid line is ĉ(y* ), the dotted line isdĉ/dy* , and the dashed line is

K̂(y* ).

FIG. 6. The first eigenmode of a similar vortex with swirlSw50.1. The

solid line is ĉ(y* ,0.1), the dotted line isdĉ/dy* , and the dashed line is

K̂(y* ,0.1).
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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Z~j,t1!5z~0!/S~0!~ t !.

The previous equations become

2Dc~2!~ t1!5
]@~ d̄b~0!!2S~0!#

]t1
5

]V b~0!

]t1
, ~76!

]x

]t1
2 n̄

1

j
~jxj!j52Dc~2!~ t !

xj

j
, ~77!

wherex stands forW andZ. I then use the following trans
formation

j15j22~ d̄b~0!!2S~0!5@ r̄ 22~ d̄b~0!!2#S~0!,

which yields

]x

]t1
54n̄~ @j11~ d̄b~0!!2S~0!#xj1

!j1
. ~78!

The bubble allows to have a solution of the equationz (0)

5( r̄v (0)) r̄ / r̄ in the form

v ~0!5
G1

2p r̄
1vv~0!,

where vv(0) is regular atr̄ 50, and to have the associate
circulation field

K~0!5
G1

2p
1Kv~0!.

C. The one-time solutions in dimensionless form

I define the following similarity functions

v* ~0!5v ~0!d̄/G,

v* v~0!5vv~0!d̄/G,

z* ~0!5z~0!
d̄2

G S V
V0

D 21

,

w* ~0!5w~0!
d̄2

Gd̄0
S V
V0

D 21S S0
~0!

S~0!~ t !
D 22

~12V 0
b/V0!1/2,

K* ~0!5K~0!/G,

K* v~0!5Kv~0!/G,

c* c~1!5cc~1!
1

Gd̄0

S S0
~0!

S~0!~ t !
D 22

~12V 0
b/V0!1/2,

whered̄0 , V0[( d̄0)2S0
(0) , andS0

(0) are the initial thickness,
volume, and length of the vortex andd̄, V[( d̄)2S(0), and
S(0) their values at timet.

If the fluid is inviscid (n̄50), the solutions are in the
form

z* ~0!5z0* ~y!,

K* ~0!5K0* ~y!5
1

2p

G1

G
1

1

2 E0

y

z0* ~y8!dy8,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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v* ~0!5
K0* ~y!

r̄ / d̄
,

w* ~0!5w0* ~y!,

where

y5S r̄

d̄
D 2

~11b~ t !!2b~ t !,

with b(t)5V b(0)(t)/(V02V 0
b(0)) andd̄(t) is the«-stretched

thickness of the core

V[~d̄!2S~0!5V01V b~0!2V 0
b~0! .

Here, (K0* (y),w0* (y)) are the initial circulation and axia
velocity fields.

The equation of the filament motion~31! is

] tX
~0!~x,t !5A~s,t !1G

K ~0!~s,t !

4p
@ log~S~0!/«!21

1Cv~ t !1Cw~ t !1W̄e~ t !#b~s,t !, ~79!

whereb(t) @and soV b(0)(t) or d̄b(0)] is obtained from Eq.
~27! and is solution of

P̃vS b~ t !

b~0! D2 P̃g0S b~ t !

b~0! D
~12k!

1
S~0!

S0
~0! ~Cp@b~ t !#

1W̄e@b~ t !# !50, ~80!

with

P̃v54p2~ d̄0
b~0!!2~p~0!~`!2 P̄v!/G2,

P̃g054p2~ d̄0
b~0!!22 P̄g0 /G2.

These coupled equations~79!–~80! for the motion of the
centerline of the vortex bubble and for the bubble thic
ness dynamics generalize the equation of motion
Genoux14 to a non-potential vortex bubble with a filament
any shape and with axisymmetric time-variations of its thic
ness. The expressions of the core functionsCv(t) andCw(t),
Cp and W̄e that appear in these equations are given in
following.

1. Inviscid fluid

The associated core functions are

Cv~ t !5
1

2
1 lim

y→1`
S 2p2E

0

y K0*
2~y8!

y81b~ t !
dy82

1

2
log~y

1b~ t !! D 2
1

2
logS V

S~0!D 1
1

2
log~11b~ t !!,

Cw~ t !524p2~S0
~0!/S~0!~ t !!3E

0

`

w0*
2~y!dy,

Cp~ t !522p2b~ t !E
0

` K0*
2~y!

~y1b~ t !!2 dy,
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W̄e~ t !5W̄e~0!AS0
~0!

S~0!Ab~ t !

b~0!
,

whereW̄e(0)54p2d̄0
b(0)Ȳ/G2.

2. Discontinuous vorticity field
For a vortex bubble with the vorticity inside a vorte

tube, thes-average of quasi-stationary~one-time! solutions
of the first-order interface equation@Eq. ~B6! in Appendix B#
satisfies

]d̄ t~0!

]t
1

1

2

Ṡ~0!

S~0!
d̄ t~0!5

Dc~2!~ t !

d̄ t~0!
, ~81!

where I used the value of^s (0)uc(2)&. From this equation and
Eq. ~73!, it comes

V t~0!5V 0
t~0!1V b~0!2V 0

b~0! , ~82!

where V t(0)5( d̄ t(0))2 S(0)(t) is the volume of the vortex
tube. This equation is coherent with the volume

V5V01V b~0!2V 0
b~0!

previously introduced to describe the volume of the contin
ous vorticity field in an inviscid fluid (n̄50). In this case, I
choose the thicknessd̄ of the vortex to bed̄ t.

For a vortex bubble with a core of Rankine type and
uniform axial jet:

K0* ~y!5H 1

2p S G1

G
~12y!1yD if 0 ,y,1,

1

2p
if y.1,

~83!

w0* ~y!5H Sw~0!/p if 0 ,y,1,

0 if y.1,
~84!

where Sw(0)5m0 /(Gd̄0A12V 0
b/V0) is the initial swirl

number, andm0 is the initial axial flux. The swirl number
Sw(t) at time t is defined bySw(t)5m(t)/(Gd̄A12V b/V),
wherem(t) is the axial flux at timet. These two swirl num-
bers are related by

Sw~ t !5
d̄0

d̄
S S0

~0!

S~0!~ t !
D 2S V

V0
D 1/2

Sw~0!.

It comes

Cv~ t !52
1

2
logS V

S~0!D 1
1

2 S 1

1E
0

1 @~G1 /G!~12y!1y#2

y1b~ t !
dyD ,

Cw~ t !524Sw
2 ~0!~S0

~0!/S~0!~ t !!3,

Cp~ t !52
1

2
b~ t !S 1

11b~ t !

1E
0

1 @~G1 /G!~12y!1y#2

~y1b~ t !!2 dyD .
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The relative velocity field of this Rankine vortex core with
uniform axial jet depends only on two parameters: the ra
G1 /G and the initial swirl numberSw(0). It depends on only
one parameter if the axial velocityw* (0) is divided by
Sw(0).

In the case of a potential vortex ring bubble (G250),
the added conditionv50 implies the following leading-
order velocity field:v (0)5G1 /(2p r̄ ) andw(0)50. It comes

Cv~ t !52
1

2
logS V

S~0!D 1
1

2 S 11 log
11b

b D ,

5
1

2
2 log d̄b~0!,

Cw~ t !50,

Cp~ t !52
1

2
.

D. Study of typical cases

1. Isothermal transformation

In the peculiar interesting casek51 ~isothermal
transformation14!, Eq. ~80! is the following polynomial of
second degree inx:

x21ax2150,

where

x[Ab~ t !/b~0!YAP̃g0 / P̃v1
1

2

S~0!

S0
~0!

1

P̃v

,

a[W̄e~0!Y SAP̃vA1

2
1 P̃g0

S0
~0!

S~0! D .

The solution is

x5
1

2
~2a1A41a2!. ~85!

In order to find the thickness of the bubbled̄b(0)(t) at timet
we computea, deducex from Eq. ~85!, obtainAb(t)/b(0)
from the definition of x and use Ab(t)/b(0)
5 d̄b(0)(t)/ d̄0

b(0) . This thickness exists for any values of th
parameters and at any time. It decreases with increasing
ues of the surface tension parameterW̄e . Its initial value
d̄0

b(0) is found by solving

~p~0!~`!2 P̄v2 P̄g0!~ d̄0
b~0!!21Ȳd̄0

b~0!5
G2

8p2 , ~86!

which is Eq.~80! at t50.
In Fig. 7, I give the initial thickness«d̄0

b(0) as a function
of the surface tensionY. The physical parameters ar
G51 m2/s, Pg050.2870(273120) atm/m3/kg, p(`)
5101.3 atm/m3/kg, Pv52.026 atm/m3/kg. Let us recall that
this surface tension and these pressures are divided by
mass density r51000 kg/m3 and that 1 atm51.013
3105 Pa.
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In the case of acircular vortex the global integralA is
A5GK log(8/2p)b/(4p) and the velocity of this bubble is

V5
G

4p
KF log

8

«d̄b~0!
2

1

2
14p2Ȳd̄b~0!/G2G .

Figure 8 shows the velocityV as a function of the surface
tensionY of a circular vortex ring bubble.

Figure 9 shows the evolution of a perturbed circular v
tex bubble in the moving frame of the nonperturbed vort
The perturbation is of elliptic shape~mode 2 of the polar
Fourier expansion11! and its amplitude is 0.15. The compu
tation was performed with theEZ–vortexcode~see our sub-
mitted paper, Margeritet al., ‘‘Implementation and valida-
tion of a slender vortex filament code: Its application to t
study of a four-vortex wake model’’! by implementing the
bubble thickness equations~85!–~86! and the Weber numbe
W̄e computation.

2. Almost adiabatical transformation

In the peculiar interesting casek51.5 ~close to the adia-
batical transformation14 k51.4), Eq. ~80! is the following
polynom of degree three inx:

FIG. 7. Thickness«d̄0
b(0) ~m! of a potential vortex ring bubble versu

the surface tensionY ~Nm2/kg!. The physical parameters areG51 m2/s,
Pg050.2870(273120) atm/m3/kg, p(`)5101.3 atm/m3/kg, Pv52.026
atm/m3/kg.

FIG. 8. VelocityV ~m/s! of a circular vortex ring bubble versus the surfac
tensionY ~Nm2/kg!. The physical parameters are as in Fig. 7.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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x31bx2Aa2
a

2
x2150,

where

x[Ab~ t !/b~0!/~ P̃g0 / P̃v!1/3,

a[~S~0!/S0
~0!!~ P̃g0 / P̃v!22/3/ P̃v ,

b[W̄e /AP̃v.

The solution is

x5S d16
a

d
14

ab2

d
22bAaD /6

with

d3[218a3/2b110828a3/2b3

16)A22a32a3b2236a3/2b1108216a3/2b.

This shows that a thickness of the bubbled̄b(0)(t) not always
exists. The values allowed fora is between 0 and a maxi
mum value, which decreases with increasing values ofb and
so of the surface tension parameterW̄e . This maximum
value is almosta54 when b50. The thickness decrease
with both increasing values of the surface tension param
W̄e , and ofa.

FIG. 9. Numerical simulation of the motion of a potential vortex ring bub
of elliptical shape (mode52, amplitude50.15) in the isothermalk51 case.
The physical parameters are as in Fig. 7 andY50.7. The frame is moving
with the unperturbed circular vortex ring bubble velocity.
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E. Ultra-fast oscillations of a vortex ring bubble

The potential vortex cannot support axisymmetric ax
variations on a short-timet, because the only potential field
that are solutions of the two-time-scale equations arev (0)

5G1 /(2p r̄ ) andw(0)50, which are without axial variation
However, axial variation are possible on a ultra-short tim
t̄ 5t/«2.

In this subsection I give the system of equations@Eqs.
~92!–~95!# for the ultra-short-time dynamics of axial varia
tions on the vortex ring bubble. I solve this system and g
a closed equation@Eq. ~97!# for the the ultra-short-time dy-
namics for the thickness of the bubble.

1. General equations

The bubble allows to have a solution of the leadin
order equation of continuity (r̄ u(0)) r̄50 in the form

u~0!5
D~0!~s, t̄ ,t,t !

r̄
.

At leading order the Navier–Stokes equations are

]u~0!

] t̄
1pr̄

~0!2
v ~0!2

r̄
1u~0!ur̄

~0!50, ~87!

]v ~0!

] t̄
1z~0!u~0!50, ~88!

]w~0!

] t̄
1wr̄

~0!u~0!50, ~89!

where z (0)5( r̄v (0)) r̄ / r̄ is the leading-order axial vorticity
Equation~87! gives the pressure

p~0!52E
r̄

` v ~0!2

r̄
d r̄1p~`!2

D~0!2

2r̄ 2
2

]D~0!

] t̄
log r̄ , ~90!

where the logr̄ term has to be matched with the outer velo
ity induced by a sink concentrated on the leading-order c
terline X(0).

The leading order of the axisymmetric part of the d
namical equation of the free-boundary~10! is

]d̄b~0!

] t̄
2u~0!50, ~91!

where all velocity components are taken on the fre
boundaryr̄ 5 d̄b(0)1. As the thicknessd̄b(0) is given by Eq.
~27!, this Eq.~91! is indeed the equation forD(0) and gives

D~0!5
1

2

]~ d̄b~0!!2

] t̄
. ~92!

The leading-order of the axisymmetric part of the press
jump ~9! is
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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p~0!~ d̄b~0!1!5S G

2p
D 2

Cp~s, t̄ ,t,t !

~ d̄b~0!!2
1p~`!

2
1

2
F S ]d̄b~0!

] t̄
D 2

1
]2~ d̄b~0!!2

] t̄ 2
log d̄b~0!G

5Pv1Pg0S V 0
b~0!

V b~0!D k

2
Ȳ

d̄b~0!
, ~93!

where

Cp~s, t̄ ,t,t !52S 2pd̄b~0!

G
D 2E

d̄b~0!

` v ~0!2
~ r̄ ,s, t̄ ,t,t !

r̄
d r̄.

Here, we used the relation

2
D~0!2

2~ d̄b~0!!2
2

]D~0!

] t̄
log d̄b~0!

52
1

2 F S ]d̄b~0!

] t̄
D 2

1
]2~ d̄b~0!!2

] t̄ 2
log d̄b~0!G ,

which can easily be checked from Eq.~92!.
Equation~93! is the equation of the thicknessd̄b(0) of

the bubble. It is coupled with the ultra-short-time dynam
of the core, given by Eqs.~88!–~89!, which can be written

]z~0!

] t̄
1

z r̄
~0!

r̄
D~0!50, ~94!

]w~0!

] t̄
1

wr̄
~0!

r̄
D~0!50. ~95!

The system of Eqs.~92!–~95! is a closed system for th
ultra-short-time dynamics of axial variations on the vort
ring bubble.

2. Solution

I use the following transformation

j15 r̄ 22~ d̄b~0!!2,

which yields

]x

] t̄
50, ~96!

wherex stands forz (0) and w(0). The solutions are in the
form

z~0!5z~0!~j1 ,s,t,t !,

K~0!5K~0!~j1 ,s,t,t !5
G1

2p
1

1

2 E0

j1
z~0!~j18 ,s,t,t !dj18 ,

v ~0!5
K~0!~j1 ,s,t,t !

r̄
,

w~0!5w~0!~j1 ,s,t,t !.
Downloaded 24 Jun 2003 to 139.165.106.51. Redistribution subject to A
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The dynamical equation of the bubble thickne
d̄b(0)(s, t̄ ,t,t) on this ultra-short-time is

S ]d̄b~0!

] t̄
D 2

1
]2~ d̄b~0!!2

] t̄ 2
log d̄b~0!

52~p~`!2Pv!22Pg0S V 0
b~0!

V b~0!D k

1
G2

2p2

Cp~s, t̄ ,t,t !

~ d̄b~0!!2
1

2Ȳ

d̄b~0!
, ~97!

where

V0
b~0!

Vb~0!
5

*0
2ps0

~0!~s!@ d̄0
b~0!~s!#2ds

*0
2ps~0!~s,t !@ d̄b~0!~s,t, t̄ ,t !#2ds

,

Cp~s, t̄ ,t,t !522p2S d̄b~0!

G
D 2

E
0

` K~0!2
~j1 ,s,t,t !

~j11~ d̄b~0!!!2
dj1 ,

and

K~0!5
G1

2p
1

1

2 E0

j1
z~0!~j18 ,s,t,t !dj18 .

Here, the leading-order vorticity functionz (0)@j15 r̄ 2

2( d̄b(0))2,s,t,t# is given initially and its short-timet and
normal-timet evolution are given by the equations at ne
orders. This equation~97! generalizes the one of Genoux14 to
a nonpotential vortex bubble with a filament of any sha
and with axisymmetric axial variations of its thickness. T
stationary solution of this equation~when it exists! is without
axial variations and satisfies Eq.~80!.

VII. CONCLUSION

This two-time-scale asymptotic approach allows us
derive, from the Navier–Stokes equations, the dynamics
the axial core-variations of axisymmetric shape on a vor
filament. This gives an extension of the one-time-sc
asymptotic theory of Callegari and Ting1 of vortex filament
motion. This asymptotic theory is also an alternative to d
ferent ad hoc models of vortex filament with axial cor
variations proposed by Marshall,3,4 Leonard,5 and
Lundgren.6 The dynamics of these axial variations is on
short-time scale and is inviscid at leading and first orde
These axial variations induce a small amplitude~first-order!
motion of the curved centerline on the short-time scale. T
motion is in the binormal direction of the leading-order ce
terline. The solutions of the two-time-scale equations ha
been given for axial core variations of small amplitude. Mo
theoretical and numerical work is required to study the fin
amplitude regime.

The theory of Genoux14 of vortex ring bubbles has bee
extended to a vortex filament bubble with a centerline of a
shape and with a nonpotential core.

The axisymmetric part of the velocity field at first ord
~it is the next order to the leading order! was proved to be
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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composed of two parts: a part without axial variations an
part with axial variations. The expression of this second p
was proved to be unique and to be related to the lo
stretching of the centerline. This form of the velocity field
first order was chosen by Margerit,17 who gave the one-time
dynamical equations satisfied by the part without axial va
tions of this first-order axisymmetric part of the veloci
field: it is the generalization of the Callegari and Ting theo
to the next order.

The implementation of the first-order thickness corre
tion in a numerical code of slender vortex filament motion
currently under investigation. The associated first-order c
rection to the leading-order corrected vortex filament me
ods of Klein and Knio2,33 for slender vortex filament is als
under investigation. I hope to extend these computation
vortex filaments with thicker cores and to be able to perfo
quantitative comparisons between these numerical comp
tions and direct numerical computation of the Navier–Sto
equations.
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APPENDIX A: THE LEADING-ORDER SHORT-TIME
ASYMMETRIC DYNAMICS IN THE FILAMENT

In this appendix I give the leading-order equations of
short-time asymmetric dynamics for axial variations in t
filament. This dynamics is slaved by the axisymmetric o
These equations come from the asymmetric part of the e
tions at first order. They are used in Sec. III B to perform
matching between the outer and inner velocity fields and
to obtain the equation of motion of the centerline. A stre
function is introduced and the whole asymmetric field is d
scribed with this function. The stream function solution
given for a continuous and discontinuous vorticity field@Eq.
~A8!# and for a vortex ring bubble@Eq. ~A20!#.

1. General equations

The equations of the asymmetric componentsua, va, ua

at first order are1

1

r̄
@vw

a~1!1~ r̄ ua~1!! r̄ #52v ~0!K ~0! sinw, ~A1!

z~0!ua~1!1
v ~0!

r̄
vw

a~1!1
1

r̄
pw

a~1!5w~0!2
K ~0! sinw, ~A2!

ww
a~1!5Sw

a~1! , ~A3!

v ~0!uw
a~1!22v ~0!va~1!1pr̄

a~1!52w~0!2
K ~0!r̄ cosw, ~A4!

where

Sw
a~1!5

r̄

v ~0! @2ua~1!wr̄
~0!2w~0!v ~0!K ~0! sinw#. ~A5!
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As s and t are parameters in these equations~there are no
s-derivative nort-derivative!, their solution is the same as i
the one-time analysis. Following this analysis1 I define a
stream functionca(1) by

ua~1!5
1

r̄
cw

a~1! , and va~1!52c r̄
a~1!1 r̄v ~0!K ~0! cosw,

~A6!

and expand it in a Fourier series

ca~1!5 (
n51

`

cn1
~1! cosnw1cn2

~1! sinnw. ~A7!

The only non-zero Fourier component isc11
(1) and is given by

c11
~1!~ r̄ ,s,t,t !

K ~0!~s,t !v ~0!~ r̄ ,s,t,t !
5E

0

r̄ *0
zxD~x,s,t,t !dx

z@v ~0!~z,s,t,t !#2 dz

1E
0

r̄
z

w~0!2

v ~0!2 dz1
r̄ 2

2
, ~A8!

where

D~ r̄ ,s,t,t !5v ~0!2
22w~0!2

. ~A9!

Here, I used the boundary conditionsc11
(1)( r̄ 50)50 and

@c11
(1)# r̄( r̄ 50). This expression~A8! has been written in this

form, without derivatives of the velocity field, so that it
easy to findc11

(1) if the velocity field is discontinuous. Any
expression with derivatives of the velocity field would b
more difficult to use because of the contributions of t
delta-functions that would be in the integrals. Equation~A8!
extends the Callegari and Ting1 equation of the stream func
tion c11

(1) to axial core-variations of the leading-order velo
ity field and to discontinuous vorticity field.

The asymmetric velocity field (ua(1),va(1),wa(1)) and
the asymmetric pressurepa(1) depend only on the leading
order velocity field. From Eqs.~A6!, ~A3!, and ~A2!, it
comes

ua~1!5u11
~1! sinw, ~A10!

va~1!5v11
~1! cosw, ~A11!

wa~1!5w11
~1! cosw, ~A12!

pa~1!5p11
~1! cosw, ~A13!

with

u11
~1!52c11

~1!/ r̄ ,

v11
~1!52~c11

~1!! r̄1K ~0!r̄v ~0!,

w11
~1!52c11

~1!wr̄
~0!/v ~0!,

p11
~1!52c11

~1!z~0!2 r̄ K ~0!w~0!2
2v ~0!v11

~1! .

2. Discontinuous vortex field

For a vortex with the vorticity inside a vortex tube, th
first-order asymmetric part of the condition of continuity
the pressure~4! yields
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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@@pa~1!##52
d̄ ta~1!

d̄ t~0!
@@v ~0!2

##,

where d̄ ta(1) is the asymmetric part of the first-order thic
ness of the tube. Here, I used Eq.~13! to have @@pr̄

(0)##

5@@v (0)2##/ d̄ t(0). The same jump can be found from Eq
~A13! and ~A8!. The first-order asymmetric part of the co
dition of continuity of the normal velocity~7! gives

@@ua~1!##5
d̄w

ta~1!

d̄ t~0!
@@v ~0!##,

and so

@@c11
~1!##5 d̄11

t~1!@@v ~0!##,

whered̄ ta(1)5 d̄11
t(1) cosw. The same jump can be found from

Eq. ~A8!. It means that Eq.~A8! of c11
(1) is correct even

through the interface. The asymmetric part of the kinema
boundary condition at first order gives

d̄w
ta~1!5

d̄ t~0!

v ~0! ua~1!. ~A14!

Here, all velocity components are taken on the interfacr̄

5 d̄ t(0)6. This equation yields

d̄11
t~1!5c11

~1!/v ~0!. ~A15!

3. Vortex ring bubble

For a vortex bubble, the first order for the asymmet
part of the continuity of pressure~9! is

p11
~1!1

d̄11
b~1!

d̄b~0!
v ~0!2

5ȲK ~0!, ~A16!

where d̄11
b(1) is the asymmetric part of the first order fre

boundary of the bubble. Here, all fields are taken on
free-boundaryd̄b(0)1. This equation is the equation of th
thicknessd̄11

b(1) of the bubble. The first order of the asymme
ric part of the dynamical equation of the free-boundary~10!
is

d̄w
ba~1!5

d̄b~0!

v ~0! ua~1!. ~A17!

Here, all velocity components are taken on the free-bound
r̄ 5 d̄b(0)1. This equation yields

d̄11
b~1!5c11

~1!/v ~0!. ~A18!

This last equation combined with Eqs.~A16! and ~A13!
gives the following boundary conditions for the equation
c11

(1)

d̄b~0!~v ~0!2
1w~0!2

!1Ȳ5
~c11

~1!! r̄

K ~0! v ~0!, ~A19!

where I used the second boundary conditionc11
(1)( d̄b(0))

50. The only solution of the equation ofc11
(1) with these two

boundary conditions is
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c11
~1!~ r̄ ,s,t,t !

K ~0!~s,t !v ~0!~ r̄ ,s,t,t !

5E
d̄b~0!

r̄ *
d̄b~0!

z
xD~x,s,t,t !dx

z@v ~0!~z,s,t,t !#2 dz1E
d̄b~0!

r̄
z

w~0!2

v ~0!2 dz

1
r̄ 22~ d̄b~0!!2

2
1 d̄b~0!ȲE

d̄b~0!

r̄ 1

z@v ~0!~z,s,t,t !#2 dz.

~A20!

The behavior of*
d̄b(0)
r̄

1/(z@v (0)(z,s,t,t)#2)dz at infinity is
p r̄ /G, where I used Hoˆpital’s rule and the behavior ofv (0) at
infinity.

APPENDIX B: THE FIRST-ORDER SHORT-TIME
AXISYMMETRIC DYNAMICS IN THE FILAMENT

In this appendix I give the first-order equations of t
short-time axisymmetric dynamics for axial variations in t
filament. These equations come from the axisymmetric p
at second order. In the two-time scale framework the tim
average of these equations gives~Sec. III C! the leading-
order normal-time equations in the filament. In the one-ti
~normal-time! framework the compatibility conditions to
these equations also give~Secs. IV and VI! the leading-order
one-time equations in the filament. The one-time solution
these equations and its uniqueness is studied in Appendi

1. Continuous vorticity field

The first-order compatibility equations of the one-tim
analysis become the dynamical equations of the axisymm
ric part of the first-order relative velocity field. At first orde

pc~1!52E
r̄

` 2v ~0!vc~1!

r̄
d r̄, ~B1!

and at second order

~ r̄ uc~2!! r̄1 r̄ wz
c~1!5Sc~1!, ~B2!

]vc~1!

]t
1zc~1!uc~1!1z~0!uc~2!1wc~1!vz

~0!1w~0!vz
c~1!

5Sv
c~1! , ~B3!

]wc~1!

]t
1wr̄

~0!uc~2!1wr̄
c~1!uc~1!1pz

c~1!1wc~1!wz
~0!

1w~0!wz
c~1!5Sw

c~1! , ~B4!

where zc(1)5( r̄vc(1)) r̄ / r̄ is the axisymmetric part of the
first-order axial vorticity and

Sc~1!52
ṡ~0!

s~0! r̄ 2
s~1!

s~0! ~ r̄ ur̄
c~1!!,

Sv
c~1!5w~0!vz

~0!
s~1!

s~0! 2
]v ~0!

]t
1 n̄S ~ r̄v r̄

~0!! r̄

r̄
2

v ~0!

r̄ 2 D ,
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Sw
c~1!5w~0!wz

~0!
s~1!

s~0! 1pz
~0!

s~1!

s~0! 2
ṡ~0!

s~0! w~0!2
]w~0!

]t

1 n̄
~ r̄ wr̄

~0!! r̄

r̄
.

Here, I used the first-order asymmetric field to state that
w-average ofz (1)u(1) is zc(1)uc(1), and that the one o
wr̄

(1)u(1) is wr̄
c(1)uc(1). This system, of unknownpc(1), vc(1),

wc(1), anduc(2), is closed.

2. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube th
interface dynamics has to be found and the previous eq
tions have to be completed. The second-order axisymme
part of the condition of continuity of the pressure~4! yields

@@pc~1!##52
d̄ tc~1!

d̄ t~0!
@@v ~0!2

##,

whered̄ tc(1) is the axisymmetric part of the first-order inte
face thickness. Here, I used Eq.~13! to have @@pr̄

(0)##

5@@v (0)2##/ d̄ t(0). This jump condition means that the expre
sion ~B1! of pc(1) is not correct through the interface and h
to be replaced by

pc~1!

55 2E
r̄

` 2v ~0!vc~1!

r̄
d r̄1

d̄ tc~1!

d̄ t~0!
@@v ~0!2

## if r̄ , d̄ t~0!,

2E
r̄

` 2v ~0!vc~1!

r̄
d r̄ if r̄ . d̄ t~0!.

The second-order axisymmetric part of the continuity
the normal velocity~7! yields

@@uc~2!##5S d̄z
t~1!2

s~1!

s~0! d̄z
t~0!D @@w~0!##1 d̄z

t~0!@@wc~1!##

1 d̄z
t~0!d̄ tc~1!@@wr̄

~0!##. ~B5!

Here, I used the first-order asymmetric field to state that
w-averages ofv (1)d̄w

t(1)/ d̄ t(0) and ofur̄
(1)d̄ t(1) are zero.

The axisymmetric part of the kinematic boundary con
tion at second order gives

]d̄ tc~1!

]t
2uc~2!1w~0!d̄z

tc~1!1 d̄z
t~0!wc~1!1wr̄

~0!d̄z
t~0!d̄ tc~1!

5Sb
c~1! , ~B6!

where

Sb
c~1!52

]d̄ t~0!

]t
1w~0!

s~1!

s~0! d̄z
t~0! .

In this equation all velocity components are taken on
interfacer̄ 5 d̄ t(0)6.
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This system, of unknownpc(1), vc(1), wc(1), uc(2), and
d̄ tc(1), is closed.

3. Vortex ring bubble

For a vortex bubble the interface dynamics has to
found and the previous equations have to be completed.
first-order of the axisymmetric part of the continuity of pre
sure~9! is

pc~1!1 d̄bc~1!pr̄
~0!5 P̄g0S V 0

b~0!

V b~0!D kFV 0
b~1!

V 0
b~0!

2
V b~1!

V b~0!G k

1Ȳ
d̄bc~1!

~ d̄b~0!!2
, ~B7!

where all fields are taken on the free-boundaryd̄b(0)1. This
equation gives the axisymmetric part of the thicknessd̄bc(1)

of the bubble.
The first order for the axisymmetric part of the dynam

cal equation~10! of the free-boundary is

]d̄bc~1!

]t
2uc~2!1w~0!d̄z

bc~1!1 d̄z
b~0!wc~1!1wr̄

~0!d̄z
b~0!d̄bc~1!

5Sb
bc~1! , ~B8!

where

Sb
bc~1!52

]d̄b~0!

]t
1w~0!

s~1!

s~0! d̄z
b~0! .

In this equation, all velocity components are taken on
free-boundaryr̄ 5 d̄b(0)1. The bubble allows to have a solu
tion of the equation of continuity~B2! in the form

uc~2!5
Dc~2!~s,t,t !

r̄
1uvc~2!,

where uvc(2) is regular atr̄ 50. As the thicknessd̄bc(1) is
given by Eq.~B7!, Eq. ~B8! is indeed the equation forDc(2).

This system, of unknownpc(1), vc(1), wc(1), uvc(2),
Dc(2), and d̄bc(1), is closed.

APPENDIX C: UNIQUENESS PROBLEM AT LEADING
ORDER

In this appendix I consider the uniqueness problem
the solutions to the leading-order one-time compatibil
conditions. These equations are obtained if the short-tim
scale derivative is removed from the leading-order short-ti
axisymmetric equations~13!–~16! for axial variations.
Leading-order velocity fields without axial variations an
uc(1)50 are solutions of these leading-order compatibil
conditions. As we will see, the study of small perturbatio
around the solutions without axial variations seems to in
cate that they are the unique solutions to these compatib
conditions.

I introduce a small stationary perturbatio
(ũc(1),ṽ (0),w̃(0),p̃(0),c̄c(1),K̃(0)) of a flow without axial
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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variations, denoted by (uI c(1)50,vI (0),wI (0),pI
(0),cI

c(1),KI (0)).
At first order in its amplitude, the perturbation satisfies

p̃~0!52E
r̄

` 2vI ~0!ṽ ~0!

r̄
d r̄, ~C1!

~ r̄ ũc~1!! r̄1 r̄ w̃z
~0!50, ~C2!

zI
~0!ũc~1!1wI ~0!ṽz

~0!50, ~C3!

wI r̄
~0!ũc~1!1 p̃z

~0!1wI ~0!w̃z
~0!50, ~C4!

or the equivalent system

cI
c~1!K̃z

~0!5KI y
~0! f , ~C5!

4ycI y
c~1! f yy1

1

y
KI ~0!K̃z

~0!24ycI yyy
c~1! f 50, ~C6!

where f 5c̃z
c(1) . If cI y

c(1)50 then Eq.~C5! yields c̃z
c(1)KI y

(0)

50 and soc̃z
c(1)50 is the only physical solution. Equatio

~C6! then yieldsK̃z
(0)50 asKI (0)Þ0. So the only possible

stationary perturbation is without axial variations. IfcI y
c(1)

Þ0, Eqs.~C5!–~C6! yield

f 91G~y! f 50, ~C7!

lim
y→1`

f 50,

f 8~0!50,

K̃z
~0!5 fKI y

~0!/cI y
c~1! ,

with

G5FKI ~0!KI y
~0!

4y2 2cI y
c~1!cI yyy

c~1!G Y cI y
c~1!2

.

For most flows (cI
c(1),K(0)), f 50 seems to be the

unique solution of the linear equation~C7! and so the only
possible stationary perturbation seems to be without a
variations. The velocity fields without axial variations see
to be isolated solutions of the leading-order compatibi
conditions. Souza12 used a standard comparison principle f
quasi-linear elliptic operators and proved that there are
other stationary solutions of the Bragg–Hawthorne equa
~22! than the solutions without axial variations. Klein an
Ting34 assumed that these compatibility conditions have
tionary solutions with axial variations and derived the eq
tions of evolution of these fields in a one-time analysis on
normal-time scale. Unfortunately, as was pointed out
Souza~private communication!, no field with axial variations
and without axial velocity at infinity is solution of th
leading-order compatibility conditions.

For a vortex with the vorticity inside a vortex tube,
also comesd̄ t(0)(s,t)5 d̄ t(0)(t), and for a vortex bubble it
comesd̄b(0)(s,t)5 d̄b(0)(t).
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APPENDIX D: UNIQUENESS PROBLEM AT FIRST
ORDER

In this appendix I consider the uniqueness problem
the solutions to the one-time compatibility conditions at ne
order. These equations are obtained if the short-time s
derivative is removed from the first-order short-time axisy
metric equations~B1!–~B4! for the axial variations. Assum
ing that the compatibility conditions at first order have t
only solution without axial variations~as suggested in Ap
pendix C! it is found in this appendix that these compatibili
conditions at second order also have a unique solution. H
this solution is given and proves to be the one introduced
Margerit17 to generalize the Callegari and Ting theory1 at
next order.

I define

§5
ṡ~0!

s~0!2
Ṡ~0!

S~0! ,

z̃5E
0

s

s § ds8,

x~2!5
1

§
S uc~2!1

1

2
r̄

Ṡ~0!

S~0! D ,

b~1!5wc~1!1 z̃.

The subtraction of Eqs.~34!–~35! from Eqs. ~B1!–~B4!
yields

pc~1!52E
r̄

` 2v ~0!vc~1!

r̄
d r̄, ~D1!

~ r̄x~2!! r̄1 r̄b z̃
~1!50, ~D2!

z~0!x~2!1w~0!v z̃
c~1!50, ~D3!

wr̄
~0!x~2!1pz̃

c~1!1w~0!b z̃
~1!50, ~D4!

or the equivalent system

cc~1!Kz̃
c~1!5Ky

~0! f , ~D5!

4ycy
c~1! f yy1

1

y
K~0!Kz̃

c~1!24ycyyy
c~1! f 50, ~D6!

where

f 5c z̃
c~2! ,

x~2!52
1

r̄
c z̃

c~2! ,

bc~1!5
1

r̄
c r̄

c~2! ,

Kc~1!5 r̄vc~1!.

As the linear operator of the systems~D1!–~D4! and ~D5!–
~D6! is the same as the one of Eqs.~C1!–~C4! and ~C5!–
~C6!, the unique solution of these systems isf 50 and
Kz̃

c(1)50. The unique stationary solutions of the compatib
ity conditions for the first-order axisymmetric field are
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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vc~1!~ r̄ ,s,t !5vu~1!~ r̄ ,t !,

wc~1!~ r̄ ,s,t !5wu~1!~ r̄ ,t !1E
0

sS 2ṡ~0!1s~0!
Ṡ~0!

S~0! D ds8,

uc~2!~ r̄ ,s,t !52
1

2
r̄

Ṡ~0!

S~0! ,

where the evolution of (vu(1),wu(1)) in the normal-time scale
can be found from the axisymmetric equations
third-order.17

For a vortex with the vorticity inside a vortex tube, th
subtraction of Eq.~36! from Eq. ~B6! written without the
short-time scale derivative yieldsd̄z

tc(1)50, i.e., d̄ tc(1)(s,t)
5 d̄ tc(1)(t).
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