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Axial core-variations of axisymmetric shape on a curved slender vortex
filament with a similar, Rankine, or bubble core
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The dynamics of axial core-variations of axisymmetric shape on a vortex filament is derived from
the Navier—Stokes equations in the slenderness limit. The core of the vortex is of similar, Rankine,
or bubble type with a centerline of any shape. In this limit, a two-time-scale asymptotic approach is
used to study the dynamics of the axial core-variations and of the centerline. The short-time
dynamical equations of the axial core-variations are given and are inviscid at leading and first
orders. The induced short-time and normal-time dynamics of the centerline is obtained. The full
two-time-scale dynamics of the axial variations and of the filament motion is discussed qualitatively.
The normal-time dynamics of vortex filaments without axial core-variations is given in a short form.
Within the two-time-scale framework, the dynamics of axial core-variations around this one-time
base flow is then studied in the small amplitude limit. The normal-time equations of a vortex bubble
are given. The bubble has no axial variations, a centerline of any shape and can have a nonpotential
core. The equation for the ultra-short-time dynamics of axial variations on this bubble is given.
© 2002 American Institute of Physic§DOI: 10.1063/1.151621]0

I. INTRODUCTION circulation of the vortex filament, and is the kinematic
viscosity. In dimensionless variables with the wavelergth
Slender vortex filaments are high concentration of vor-=116 as the characteristic length, these parameters of simu-
ticity along a geometrical curve of the fluid flow; they have |ation correspond ta = 6/L=1/11~0.09, and to a viscous
been studied since more than a century, as their dynamigsarameter(see Sec. )l a=Re Y¥¢~0.43. Arendtet al®
gives the one of the flow. Almost all the vorticity is inside a give the evolution of any initial axial variations of small
tube of small thicknes$ compared to the characteristic ra- amplitude in the dynamics of the linearized axisymmetric
dius of curvatureR of its centerline; the ratid/R defines a  equations.
small parameteg. In the small thickness limit, this tube is a In this paper | derive and study the leading-order set of
“boundary layer” (in the singular perturbation method point equations of motion oturved slender vortex filaments of
of view); and, except for a straight filament, it is moving any shapewith axial core-variations From the study of the
with a velocity that depends on its core structure, as can beigen-oscillations of acircular vortex ring, Kopiev and
found from the Biot—Savart law of inductidrf. This small  Chernyshe¥ give the dynamics of the bending modes that
moving region of the flow is difficult to track in experimental oscillates on the timé of the motion of the vortex ring. The
measurements and induces stiffness in direct numericalynamics of these bending modes can also be found from a
simulations of vortex filaments. linear stability study of the asymptotic equation of motion of
Asymptotic methods have been used to get ride of thissortex filaments®! For a circular vortex ring Kopiev and
stiffnes$?and to extract, at leading order, a nonstiff equationChernyshe¥ also give the dynamics of bulging modes that
for the filament motion. This asymptotic theory assumes thatan be shown to oscillate on the short tiret/c. It shows
the leading-order core is axisymmetric and without axialthat a two-time-scale analysis can be used to study them for
core-variations. Generalized systems of equations for filaa general curved filament. This would extend the one-time
ments with axial core-variations have been propgsédn analysis of the previous asymptotic thebmyithout axial
these studies, the characteristic length of the axial variationsore-variations. It also extends to a curved filament the one-
is of the order of the radius of curvature which is bigger thanand short-time analysis by SodZaf a straight filament with
the thickness;, short wavelengths are not taken into account.core-variations. In this paper, | carry out this two-time-scale
These systems are ad hoc equations because they are maoialysis.
asymptotically derived from the Navier—Stok@s-S) equa- The paper is organized as follows. In Sec. Il, | give the
tions. geometrical description of the centerline and of the vortex
For astraight vortex filament with axial core-variations core in local coordinates near the centerline of the filament.
(bulging waves Melander and Hussalmjive a spectral com- In these coordinates, | give the dynamical equations of the
putation of the axisymmetric equations. They compute avelocity field, those of the interfacdd there are any: i.e.,
bulging wave of wavelength=116 and amplitude~0.56 at ~ vortex sheet when there is a jump of axial velocity or bubble
Re=I"/v~665, whered is the mean core radiud, is the free-boundary and all the two-time-scale asymptotic expan-
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sions. In Sec. lll the cascade of asymptotic equations iplane(n, b), and thus polar coordinatés ¢) can be used in
given in the two-time-scale framework. From the axisym-this plane with the associated polar vectogs, €,) and with
metric part of the first-order asymptotic equations, | obtaing the angle between andPM.
short-time-scale dynamical equations for the axial core- The relative velocityV is defined by
variations of axisymmetric shape. These equations are the
same as those obtained by Sodztor a straight filament. v=X(s,1)+V(r,,81), (D)
For a curved filament they were first given in Margerit and _
Brancher*® Souza pointed oufprivate communicationthat ~ wherev is the velocity of the fluid an& the local filament
the equations for a straight filament might be relevant to avelocity. The radial, circumferential, and axial components
curved filament. Here, | prove that curvature does not givdu,v,w) of the relative velocity are defined by =ue
adding terms in these equations and | also give the induced¢tve,+wt. The vorticity field w is given by o=V XV
short-time dynamics of the curved vortex centerline. In Sec.+tx)'(s/h3, whereh;= o (1—rK(s)cosf)), K is the local
IV the one-time(normal-time dynamics of vortex filaments curvature, andr= X
without axial core-variations of the Callegari and Ting  In the asymptotic theory of vortex motion, the thickness
theory" is given in a short form. This gives the one-time bases of the ring is of orderl and the other length scales, for
flow that is used in the linear stability study of Sec. V. This example the local radius of curvatureklér the lengthS of
analysis is carried out in the two-time-scale framework tothe closed filament are of the same ortleSince the vortex
study the dynamics of small axial core-variations around thigs slender the small parameter<1 is defined as the ratio
one-time base flow. In Sec. VI the one-tifgormal-timg  [/L. | nondimensionalize the velocity field with/L, all
continuous vortex-core of the Callegari and Ting thédsy  |engths withL, and the time witi.2/T". Theouter probleris
extended for a vortex bubble with a centerline of any shapejefined by theouter limit e—0 with r fixed, which de-
and with a nonpotential core. An equation for the ultra-fastscribes the flow far from the centerline; and iheer prob-
dynamics of axial variations of the bubble free-boundary islem by the inner limit.: e—0 with T=r/¢ fixed, which de-
given. This generalizes the theory of GenB®® of vortex  scribes the flow near the centerline.
bubbles of circular centerline and potential core. Finally a  The Reynolds numbeR.=I"/v, where v is the kine-
conclusion is given in Sec. VII. matic viscosity, is related te by R, Y?=as. Here, thevis-
Several steps of the derivations are given in the appencous numbera=0(1) is defined bya?=7IT", where v
dices. Appendix A gives the asymmetric part of the equations= »/¢2. The inviscid vortex ring is obtained in the limit
at first order and Appendix B gives the axisymmetric part of=0. The asymptotic ansatz based on the small slenderness
the equations at second order. In Appendix C the core withratio allows to unify the related analyses for the Navier—
out axial variations appears to be the unique stationary soluStokes and Euler equations.
tion of the short-time-scale equations given in Sec. Ill. Fi-  |n this study | assume that the vorticity field is centered
nally in Appendix D the axisymmetric part of the stationary near the centerline and rapidly decays at large distance. | will
solution of the short-time-scale equations at next order isissume that the vorticity distribution is of bounded support

proven to be the sum of a part without axial variations and ofor decays exponentially. The same standard assumption is
a part with axial variations. The structure of this second parkiso taken for the axial velocity field.

is unique and is induced from the local stretching of the
centerline. Fortunately this structure was that introduced im\. General equations
Margerit’ to generalize the Callegari and Ting thebmt

next order. The continuity equation in these curvilinear coordinates

(r,o,s) ist
IIl. NOTATIONS AND TWO-TIME EXPANSIONS (urhg), +(hgv) o+ rWe—Trw,=—r Xg-t, ®)

Here, | give the geometrical description of the flow field \yhere T is the local torsion of the filament. The Navier—
and of the filament, and the local coordinates that are used. Agkes equation becortes

discussion of the characteristic scales of the asymptotic slen-

der filament regime and the basic assumptions of the v

asymptotic study are then given. Finally, the equations for ~a=—Vp+vAV+ ha

the flow are written on the local coordinates and the two- 3

time-scale expansions are given. _ _wherev is the kinematic viscosity, and the acceleratiis
The closed centerline of the slender vortex of circulation

I' and lengthS is described by the vector functioX

=X(s,t) wheres stands for the arc-length a&0. At each a=

point of this curve the Frenet vector basts n, b) exists

with, respectively, the tangent, normal, and binormal vectors. .

1.
h_sxs)s' ()

oV _ Xs _ .
—) +(V—rg) - VV+-—(w—rg-t)+X,
It/ s hs

¢,

| introduce alocal curvilinear coordinate systel(r,¢,s) with

and the curvilinear vector basis (€, ,t) valid near this line. v au

This system is defined in the following mannerpPffs) is the <—) =—eg+ug+....
projection on the centerline of a poiM thenPM is in the at r.e.s at
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Here and in the whole paper, the pressure is in fact the pre®ubble is uniform. As pointed out by one of the referees,
sure divided by the constant density of the incompressiblgolytropic variations are merely an approximate simplifica-
fluid. The boundary conditions of these equations ey tion of the full thermodynamics as they are based on an ad

=0 atr=0. hoc coupling between two otherwise independent thermody-
namics variables. | will not remove this assumption of poly-
B. Discontinuous vorticity field tropic variations by including an energy balance equation in

the analysis as was suggested by this referee and | postpone
this work for the future.
The dynamical equation of the free-boundary is

In an inviscid fluid, if the vorticity is inside a tube of
thicknesss', the location of this interface= 6'(¢,s,t) is an
unknown function. At this interface one has to satisfy both

the continuity of pressure 98°
+ b _
[[p]1=p(8")~p(8)=0 @ V@ mde) =0 (10
and the continuity of the normal velocity whereVF is as before but withs' replaced bys®. For this
[[v-N]]=0 (5) inviscid fluid the thin diffusion layer along the interface is

assumed to have no thickness and there is no viscosity (
whereN is the normal vector to the interface and is given by =0) in Eq.(3) which becomes the Euler equation.

N=—VF/|VF| with F=&'(¢,s,t)—r and As the fluid is outside of such a bubble, singularities can
1 98 1 {98t 968t exist inside the bubble, which is not possible in a homoge-
= — — — | —— T — neous fluid, and the conditiam=v =0 atr=0 is no longer
VF er+5t Py e,+ ha| s UT&‘P)t) v 9

valid. Vortex ring bubbles without axial variations and with a
The dynamical equation for the interface is given by thecircular centerline have been studied by Geri8der a po-

kinematic boundary condition tential flow. In fact, vortex ring bubble can be embedding in
; a vortical flow: for example, one can easily consider a vortex
7 +(V(87F)—o'%)-VF=0 (6)  ring bubble with a vortex core of Rankine type. The circula-

ot '

tion I" of the ring is thenl'=T";+1",, wherel; is the cir-
where st is used to allow the possibility of the interface to culation induced by the vortex sheet on the free-boundary
be a vortex sheet of strength=Nx[[v]]. Following Wu2® andl’, is the added circulation due to the vortical core.
a dynamical equation for this strengthcan be written but The Weber number iV,=LY/(sT?) and | defineY
will not be used here. For this inviscid fluid the thin shear=¢Y, P,=¢&?P,, Pgozsngo. | am interested by the re-
layer is assumed to be without thickness and there is ngime W,=O(e~?) because the effect of the surface tension
viscosity (v=0) in Eq. (3) which becomes the Euler equa- will come at leading order in the pressure jurt®.
tion.

In local coordinates, Eq$5) and (6) become D. Two-time analysis and expansions
St St 96t In the two-time analysis, the expansion of the velocity
—[full+ 5t %HU]H hs\ os UT% [[w]]=0, X=aX+& 13,X of the centerline is

7 .
X=X+ 9 XP+0(eloge),

96 1 96 1 /96 96 .
o Ut P + hs (E_ ol Q)W— 0&-VF=0,  with the following expansion of the centerline:
®) X=XO(s,t)+ eXV(s,t,r=t/e)+... .
where all velocity components are taken on the interface . _ .
y e Here, fast oscillations of the centerline of amplitugdean
exist.
C. Vortex ring bubble The inner expansions of the relative velocity compo-

S _ _nents and of the pressure are
In the case of amviscidvortex ring bubble, the location

of the free-boundary= 8°(¢,s,t) is another unknown func- uM=ud (T, o,5,t,7)+...,
tion. The pressure jump at the free-boundary of the bubble is

[[p1I°=p(8"")—p(&°7)=2Y«, 9

whereY is the surface tension divided by the constant den-
sity of the incompressible fluid and(¢,s,t) the mean cur- pM=¢"2pO(Fst,7)+s pO(F @8t 7)+...,
vature of the free-boundary.

The bubblé* contains liquid vapor of pressuf, and  whereT=r/¢ is the stretched radial coordinate in the core.
noncondensables of partial pressuRy=Pyo(V AL Here, the leading-order velocity field is axisymmetric, as in
where) P is the volume of the bubble aridis the polytropic  the previous asymptotic theories, but can change along the
constant of the ideal gas in the bubble. Héf%, andPgy, are  filament. There is no radial velocity at leading order. This is
their initial values. The pressup 6°)=P,+ Py inside the  consistent with an axisymmetric leading order: e.g., an ellip-

v"M=g "L OF s t, )+ YT o5t )+,

wM=¢"WwOT st n)+wH (T, e,st,1)+...,
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tic core at leading order will behave like a Kirchhoff ellipse A. The leading-order short-time axisymmetric
which would rotate on the ultra-short timés? and have a dynamics of axial variations in the filament

nonzero radial velocity at leading order. _ The leading-order equations of the short-time axisym-
Short wavelengths of orderare out of the scope of this  etric dynamics in the filament come from the axisymmetric

theory: their dynamics would be on the timet/e?, would  part at leading and first orders. | will give these equations in
use a stretched axial coordinade s/ and was studied by this subsection.

Widnall and Tsai® in the linear regime around a circular

vortex ring. 1. Continuous vorticity field
If the yorticity is ?nsi.de a vortex tube, the interface has The leading-order compatibility conditions of the one-
the following expansion: time analysi$ become the dynamical equations of the axi-
§:5t/8:§(0)(¢ st T)+8§(1)((P s,t,7)+ symmetric part of the leading-order relative velocity field,
o T e i.e., of the axial core-variations.
and its time-derivative is a. The velocity form of the equationAt leading order
8'=09,8'+20,6'= 9.0 +e(9,80+9,6"V)+ ... w (02
. p(°)=—f_ —dr+p'9(=), (13
For a vortex bubble, one have the same expansion for ror

&°, and the expansions of the volume of the bubble and Ognd at first order
the curvature of the free-boundary are

pb (U)W, =0, (14
—5=pPO4 by
o2 : P!
+ Oy w0y (0=, (15)
k=g kO + D+ . ar
When the leading order is axisymmetric, it comes ‘9‘;"(70) +w§’)u°(1)+ p<20)+w(0)w(zo)20' (16)
y b 2 2w
?=TFL U(O)[Eb(o)]zd%«?fffo (e M7 where [(9=(1p©)/r"is the leading-order axial vorticity,
u® is the axisymmetric part of the radial velocity at
+ 200 PO DL g5+ O(£2), (17  first order, p® is the leading-order pressure, arm
=[500(s’,1)ds'.
1 1 1 8W(est,7) This system forp©, v(©@, w(® andu®® is closed. It
K=E———————+ - ———————— gives the short-time-scale dynamics of the axial core-
28"O(s,t,r) & 2[6%0(s,t,7)]? variations of axisymmetric shape. These equations are the

same as the ones obtained by Sd@fer a straight filament.
They are the “long wave scaling” shallow water equations
derived from studies of vortex breakdown of a straight
filament?®12 Let us point out that in the studies of vortex
(12 breakdown and swirling-jets, the velocity field is often non-
where 5°°1) is the axisymmetric part 06°)(p,s,t,7). dimensionalized using'/I, all lengths usind, and the time
using|?/T", wherel is the small characteristic length and is
of the thickness size. From this point of view, tiy1)
11l. TWO-TIME-SCALE DYNAMICS OF AXIAL wavelength of the asymptotic theory of vortex motion is a
VARIATIONS long wavelength and the short wavelength of the Tsai and
o _ , _ widnall'® study is a usuaD(1) wavelength.
The substitution of the previous expansions into EQS. At this order and on this short time the previous deriva-
(2)—(3) leads to a cascade of asymptotic equations as in thg,, shows that the curvature of the filament has no effect on

one-time analysi.In this section | give the two-time-scale ¢ dynamics of axial variations. This proves the intuition of
equations for the dynamics of axial variations at leading Or5ouza who pointed oufprivate communicationthat the

der. It. congists in Fhe leading-order short-time aXiSymmetri%quations for a straight filament might be relevant to a
equations n the filamerjEgs. (13)_(16_)] and the leading- curved filament. For a curved filament they were first given
order short-tim¢Eq. (33)] and normal-tim¢ Eq. (32)] equa- in Margerit and Branchéf

tions of motion of the centerline. In the first subsection the | i now give other useful forms of these equations.
leading-order equations of the short-time axisymmetric dy- b. The stream-function form of the equation®t us de-
namics in the filament are given. The leading-order shortﬁne the meridional stream functiap®®, with

time asymmetric dynamics in the filament is slaved by the
axisymmetric dynamics and is given in Appendix A. The
motion of the centerline is slaved by this core dynamics and
its induced velocity is given in the next subsection. Finally a
qualitative description of the two-time dynamics in the fila-
ment is given. KO=rp@ 'y

L[V (e,5t7)]pg
2 [0t n)]?

1
+5K<°> cos )+ +0(e),

1 1
1) _ = ¢l 0)_— ,c(1)
c(1) — r—‘/’z , wl )_r_,h ;

and introduce the following transformation:
=72
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usually used to study these equatiéhign these new vari- Pyt B
ables the previous system becomes — — Ut +w@s0=q, (26)
ﬂ_z D0 4 2yt x(0) — (17 . .
I v Ky Py Ky =0, where all velocity components are taken on the interface
= 5iO)=
gy 2 i © 40 WO e SO
D2 + 248 D2ySD 4 Z OO — 2y D This system forp'™, v, w'™ u“*  and 6% is
JaT Y y closed.
X[y *D?y*™],=0, (18)

whereD 2y =4y yt)

c. The Souza form of the equationEhe previous equa- - Vortex ring bubble

tions can also be written in the foffn For a vortex bubble the interface dynamics has to be
gKk@ 1 found and the previous equations have to be completed. The
. JrF_VL Yy vKO=0, (190  leading-order of the axisymmetric part of the pressure jump
(9 is
c(1) —72£(0)
e 2 r\’cy(s,7t)
85(0) 1 2 (O ghO+y = pA= ts (0)( oo
—— SV VO S ROK =0, (21) 4 P (P02 P)
where V=(dr,d,), V'=(—d,,0), L=d>—g7, and . [ynoyk oy
~Te@=-w? is the leading-order circumferentiahzi- =P, +Pgo 50 " 50 (27
mutha) vorticity. g
The boundary conditions to these equations are the peri-
odicity betweerz=0 andz=S®, whereS©® is the length of ~Where
the closed vortexy=/r—0 and K©—T/27 at infinity, o 2 )
and 9¢°D/dr=0 andak(@/dr=0 atr=0. C.is Tt):_(Zwé “”) F v TS
d. The equations in the Von Mises variabl€ne can PR r 5b(0) T '
c(1)

replace the independent variablesr(s) by (7,4*),s) at o
all point wherew(®+0. In these Von Mises variables, the Equation(27) is the equation of the thicknes®(© of the
previous system becomes the nonstationary Braggbubble.

Hawthorne(or Squire—Long equation The leading-order for axisymmetric part of the dynami-
oH© oKc® cal equation of the free-bounda¢¥0) is
Llﬂc(l):T?a c<1)_’C00 D (22 o
’ ’ 95°% c(1) (0) $b(0)
where H© = p©@+ (p O+ w(©%/2, gy uTrwTe, =0, (28)

2. Discontinuous vo.rt/cvty field S where all velocity components are taken on the free-
For a vortex with the vorticity inside a vortex tube the boundaryr_=§°(°)* The bubble allows to have a solution of
interface dynamics has to be found and the previous equas o equation of continuity14) in the form

tions have to be completed. The leading order of the condi-
tion of continuity (4) of the pressure on the interface yields D (s, 7.)

[[p'©1]=0. (23 “
Here and in the following, | use the notation o —
o o where u®®®) is regular atr=0. As the thicknesss®® is

[[FII=F(8"O") —f(8O) given by Eq.(27), Eq. (28) is indeed the equation fap®(*).
for the jump on the interface. This continuity of the leading- ~ This system fop©@, v©, w(®, yoe@®) P and 57
order pressure means that the expressl@ for p(® is cor-  is closed.
rect even through the interface. The first order of the conti-

nuity of the normal velocity(7) yields B. The two-time-scale dynamics of the centerline
[[uc(l)]]:gtz(m[[wm)]l (24) In thg previous sub_sectlon the. short—ume—sc_ale dynami-
. . cal equations of the axial core-variations were given for the

which can be written fog°™) as velocity field in the core. In this subsection the dynamical

C(1)77— _ RO RO [1x/(0) equation of the induced velocity of the centerline is given. It
[Lyz~1] o7, W] (25 comes from the matching law of the inner and outer velocity

The axisymmetric part of the kinematic boundary condi-fields. This motion of the centerline is slaved by the leading-
tion (6) at first order gives order core dynamics.
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1. Combined form of the equation The regime studied in this section is not the same as the
one considered by Ting and Klefdwho studied axial core-
variations on aropenvortex filament by means of a single-
I o 9snt(s,)(x=X(s,1)) time-scalet and double-axial-scales(é=¢s) analysis. For

v(x)= Ef Ix—XO(s, 1) ds. (29) an openfilament, the double-time-scale analysisr=t/¢)

o o o induces that the normal-timebehavior of a core-variation
Th'szo)'s the velocity induced by the vorticityo= 5())( perturbation, which evolves at short-time-scalet/e, is to
—X©)t concentrated on the leading-order centerli€), reach the far-distancé= ¢s of the Ting and Kleif® regime.

—x(0)y _ i (0)
Whelre ax X. t') IS ;he delt? fu(?ctlon dorv( ﬁ(s,tt.). t;l}'he i Thus, except if the open filament is periodical, a double-
axial core-variations have no ‘eading-oraer etiect In e Outef; o gc5 e analysist(r=t/e) coupled to a double-axial-

region. This results of the assumption that fast oscillations o le 67— vsi Id b ded to describe th
the centerline are of amplitudeas stated in the form of the scale §’§_SS) analysis wou € needed fo describe the
dynamics of the open filament.

expansion ofX in Sec. Il. E tex bubble. th tching law bet th ¢
At first order the matching law between this outer solu- or a vortex bubble, the matching ‘aw between the outer
solution and the inner solution yields the equation

tion and the inner solutioffound in Sec. Il A, and Appen-

At leading order the outer velocity is

dix A) yields aXO(st)+9.XYV(s,7,t)
aXO(s,t)+9.XV(s,7,t) K(O(s,t) S0
K(©(s.t) 50 =AGHFT—77 IOQ(T)
=A(S,t)+FT |OQ(T —1+CU+CW b(S,t), B
30 —1+C,+Cy+W,|b(s 1), (31)
where whereW,(s, 7,t) = 4725°)(s, 7,t) Y/T 2. Here, the inner ve-
T (+n locity field of Sec. Il A and Appendix A was used. The add-
A(s,t)=—f ads’, ing term in Eq.(31) as regard of Eq(30) is due to the
4o ) _, . . L
difference between the inner velocity fields.
, (0)
_ o . |tsts ,t)><g_K (s,t)b(s,t)
a=o'V(s+5't) 3 7 )
[¢] 2|\ (s,s", )] 2. Time averaging and splitting form of the equation
g=XO(s,t) =X O(s+s"1), The raverage of a functiofi(7,t), is denotedMf, and
is defined by

and \(s,s',t)=[5"% oO(s* t)yds*. In this Eq. (30),
C,(s,7,t) and C,(s,7,t) are known functions, which de-
scribe the circumferential and axial evolution of the inner
velocity in the core:

oL [T
./\/lf=~|lm ?Lflt f(7,t)dr,

T—+ow

whereT is an intermediate variable<T<t. The -average

1 Am? (T
Cy(s, )=+ lim (TWTJ[T'U(O)Z(T',S, r,t)dr’ of Eq.(30) yields the leading-order equation of motion of the
[ 0 filament in the normal-time scale
KO(s,1) s©
—|09ﬁ, (0) _ RN S =)
X (s t)=A(s,t)+T ype {Iog( - ) 1
1(4m\2 (=_ 0?2
Culsimt)=—35| fo rw®(r,s, 7, t)dr. +MC,+MC,,|b(s 1), (32

Equation(30) extends the Callegari and Tih@quation of  where

vortex filament motion to axial core-variations of the 5

leading-order velocity field. It holds both for a continuous or MC :E+ lim (477 frT’/\/l(vw’z)dT'—logr_)
v 0 1—‘2 0 ’

a discontinuous vorticity field. 2 .

Any initial condition that does not satisfy the induced 5
asymmetric flow field[Eq. (A8) in Appendix Al, and Eq. MCo = — £(4_7T) fmr_/\/l(w(o)z)dr_
(30) will need a three-time-scale analysis=(t/e?,7,t). Yoo21r ) Jo '

These small-amplitude oscillations of order have already
been introduced by Ting and Tuffgand Gunzburgéf to
study a straight vortex filament with an initial velocity that is

The subtraction of Eq(32) from (30) leads to the equation
for X in the short-time scale:

different from the potential background velocity on the fila- rK©(s,t)

ment. An example of such a curved filament, that does not  d,.XY(s,7,t)= 4, (AG+ACYb(sY), (33
satisfy the induced asymmetric flow fie[&q. (A8) in Ap-

pendix A}, is given in Margerit and Branchét. where
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A2 [ ) , solution at leading order, which may be called a quasi-
AC, =57 o @ = M(u@%)]dr, stationary solution of these equations. Leading-order velocity
0 fields without axial variations and®®=0 are solutions of
1[/47\2 (= (02 (02 these leading-order compatibility conditions.
WZE(?> fo W™ = M(w™)dr. Appendix C considers the uniqueness of these compat-
ibility conditions. The study of small perturbations around
The first-order equation of motion of the filament in the the solutions without axial variations seems to indicate that
normal-time scale, i.e., the equation fgX "), would come  they are the unique solutions to these compatibility condi-
from the matching at next order. An important result statedions. Appendix D considers the uniqueness of the compat-
by Eq.(33) is that the fast oscillations of smaltamplitude  ibjlity conditions at second order. Assuming that the compat-
of the centerline are only in the binormal direction and areibility conditions at first order have the only solution without

AC

proportional to the local curvature. axial variations it is found that these compatibility conditions
at second order also have a unique solution, which is given.

C. The two-time-scale dynamics of axial variations in This solution is the one introduced by Marg(grmo genera|_

the filament ize the Callegari and Ting thednat next order.

The previous subsection shows that we need to know the _ _
normal-time averageM(v(©?) and M(w(©?) of the square A The one-time equations
of the velocity components to find the normal-time evolution | now consider the leading-order velocity fields without
of the centerline. | will now give qualitative ideas of the full axial variations. For a closed filament, tiseaverage of
two-time-scale dynamics. quasi-stationaryone-time solutions of axisymmetric equa-

Let us first assume thatt(v@%) = M(v®%) and that tions at second ordefEgs. (B1)—(B4) in Appendix B
the axial velocity also satisfies this property. Let us have theatisfies
conjecture that core equatio3)—(16) give the dynamics
of the short-time variations around this averaged state — 2O =7 0= (34)
M(v©) but do not give the dynamics of this averaged state 4t '
and that these variations are bounded. We need to look at the

. . . ow(® 1 1
axisymmetric part of the equations at second order to extract —7:[r_v\#o>]*— 73
the needed dynamical equations of the averaged state. at r r2

The second-order equatiofiggs. (B1)—(B4) in Appen- . . ) o
dix B] is a linear system of equations fpf(*), 1), we(®) where the leading-order quasi-stationary velocity is without

andu®®. This system gives the dynamics of the first-order@xial variations andi®=0 as previously stated. Equations

axisymmetric axial variations. It has inhomogeneous term§32)' (34), and (35) derived by Callegari and Tirlgare a

and nonconstant coefficients, which depend only on th&omplete set of equations for the one-time solution, which is

leading-order velocity field is satisfied. Let us also have the/Vithout axial variations. Thine-timesolution is in some

second conjecture that this linear operator is not uniquel?ense the generalizat.ion to yortex fiIamenFs with c.ent(.arline
invertible. The Fredholm alternative implies that this inho- ©f @1y shape of thetationarycircular vortex ring solution in

mogeneous linear system of equations has bounded solutiofigranslative frame.

only if a compatibility condition for the leading-order veloc-

ity field. This compatibility condition is the dynamical equa-

tion of the leading-order time-averaged state. Callegari and Tinjused a special transformation to find
More theoretical and numerical works have to be done tahe solutions of Eq932), (34), and(35). In the remaining of

prove these two conjectures. | will not do this work in this this section the core-functio@,(t) andC,(t) are given and

paper. Nevertheless, as a first step, Sec. IV gives one-timdisplayed in a simple way. These expressions of the core

solutions of the equations and Sec. V studies the two-timefunctions and Eq(32) are a complete set of equations for the

scale dynamics of small axial variations around these onesne-time motion of the centerline of the filament.

time-scale solutions. The study of this linearized leading-  Let us define the following similarity functions

order operator may also help to study the linear system of _

equations fop®™®, M) WD andu®® and to carry out its v*O=0 @4,

Fredholm alternative.

50
RSOR (35
r

w©
?2

B. The one-time solutions in dimensionless form

0= g(O)EZ/F,

IV. THE ONE-TIME FILAMENT SOLUTIONS r SE,O) 2

In this section | give solutions to the one-time equations. w* @ =w0— SO (1) ,
These solutions will be used in Sec. V to study the two-time- I3
scale dynamics of small axial variations around this base 1o* (0 = O
flow. '

If the short-time scale derivative is removed from Egs. 1 SE)O) —2
(13)—(16) or from the equivalent equatiori7)—(18), these Y e = o — o
equations become compatibility equations for the one-time I\ S (V)
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wherego, Sgo) are the initial thickness and length of the
vortex ands, S(% their values at time.

1. Inviscid fluid

If the fluid is inviscid (v=0) the solutions are in the
form?*

v*O=v§(7),

w* (O =wg (),

where =715, (vi(7n),Wi(n)) are the initial velocity
fields, andd(t) is the e-stretched thickness of the core

8%(1)=55(Sy 1S O(1)),

whereS{") is the initial length of the filament. The associated

core functions are

C,()=C,(0)—log((t)/ o),
Cu(t)=Cy(0)(Sy/SV(1))3,
whereC,(0) andC,,(0) are the associated initial core con-
stant:
1 H ro k2 ’ ’
CU(O)=§+ lim | 472 77 vo“(n')dn' —logn
n— +x©

—log &y,

Cw(0)= —ZWZJO 7w§2(n)d7.

2. Viscous fluid

If the flow is viscous ¢#0) the solutions of Eq434)—
(35) and (30) are in the form®

1
*O=Z olaale 7y 4o 2 DX Pn(nz)l—}

w* (0) = Su(0 )e 74 e 7 E CrLa(7*)15"

where =714, andg(t) is the e-stretched thickness of the
core

(0)
32<t)=?o( > )

s
1,=1+—,
5

1sOt)
41/j0 50

Here, L, are the Laguerre polynomial®,,(7°) =L, 1(7°)
—L,(%?), yis the Euler’s constant; is the diffusion-added
e-stretched thickness of the core, ar@};(,D};) are the Fou-

2

14

dt’.

rier components of the initial axial velocity and tangential

vorticity

Axial core-variations of axisymmetric shape 4413

c=

f:wm)Ln(nZ)ndn,

D:=f:§3<n>Ln<n2>ndn,

=S,(0)/27,
D§=1/2m.
S\N(0)=m0/(FEO) is the initial swirl number, wheren, is
the initial axial flux. The swirl numbef,(t) at timet is

defined bySN(t)=m(t)/(F§), wherem(t) is the axial flux
at timet. The associated core functions are

— 1
C,(t)=—log 6+ 5(1+ v—log 2)
+47? Y D0 D A”mf(”*m)
2 n+m ’
(n,m) e N“\ (0,0
—\ 2 4
| [ S ) ,
Cut)y=—2| — 0
+872 > CiChAnl; "™,
(n,m) e N2\ (0,0
where
S (n+m)!
Anm= JO e “La(¥)Lm(X)dx= —r —omrnT -

In the inviscid limit v— 0, we recover the inviscid velocity
field previously given. This clearly shows the continuity of
the analyses for the Navier—Stokes and Euler equations in
the asymptotic ansatz based on the small slenderness ratio.

3. Similar vortex core
For a viscoussimilar vortex coré

1
U*(O):m(l—enz),

w* <0>:Me— 7

a
— 1
C,(t)=—log(t)+ §(1+ v—log2),
—\ 2 4
5| [ S
W(t)——z( ) g°>(t)) S5(0).

The relative velocity field of this similar vortex also depends
only on one parameter: the initial swirl numi®y(0) and is
independent of any parameter if the axial veloaity(®) is
divided by this parameter.

4. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube, the
s-average of quasi-stationafgne-time solutions of the axi-
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symmetric part of the kinematic boundary condition at secthe base flow, is split into the relative velocity field and the

ond order Eq. (B6) in Appendix B| satisfies filament motion. In the previous analysis the perturbation
0 that is used is the one of the absolute velocity field and is the
. 1 50 . . . O :
SO _ TS0 (36) superposition of axisymmetric modesse'«~ and bending
2 s modese™'¢e'nse'vr, where the coordinates are local to the

base flow. In the case of a circular vortex ring, the results of
my analysis can be derived from the one of Kopiev and
Chernyshe¥ by: (i) deriving the velocity field from their
displacement field(ii) writing this field in the usual coordi-
nates (,¢,s) of the moving frame; andiii) splitting the
(§<0)(t))2:(Ego))Z(sgm/S(O)(t))_ (37)  velocity perturbation into the relative velocity and the fila-

. - ment velocity. | prefer to derive it in a simpler and straight-
This equation is coherent with the functiod®(t)=55  forward way as follows.

(SE,O)/S(O)(t)) previously introduced to describe the thickness
of the continuous VOFtiCity field in an inviscid f|UidITF 0) A. Base flow and small perturbations
In this case | choose the thicknesf the vortex to be the
interface thickness'. For a Rankine vortex core with a uni-
form axial jet:

Here, | used o@u®)=-180)/2 where( ) denotes the
s-average, as can be found from thaverage of the axisym-
metric part of the continuity equation at second orfieq.
(B2) in Appendix BJ. It comes

| introduce a small axisymmetric perturbation

(T 5O GO (0 G RO KO K1)y

n
. 2m . Su(0)/m it 7<1 of a one-time flow without axial variations, denoted by
vo(m=y , » Wo(m=} it >1. (UeD=0,@,w®,p®, yed) KO x(0) X(1)=0):
27y
(39 oD = oD 4 e,

It comes C,(t)=3/4—1logé and C,(0)=—4S,(0)%. The

relative velocity field of this Rankine vortex core with a ’C(O)ZK(O)+#,"€(O),
uniform axial jet depends only on one parameter: the initial -

swirl numberS,,(0) and is independent of any parameter if _

the axial velocityw* (¥ is divided by this parameter. X=X,

For a vortex with the vorticity inside a vortex tube, the

V. TWO-TIME-SCALE DYNAMICS OF AXIAL interface function is also unknown. Its perturbation and the
VARIATIONS IN THE SMALL AMPLITUDE LIMIT one of the pressure are given by

In this section, | consider small axisymmetric axial
variations around the one-time scale solutit3®, (34), and SO =510 4 4, 510
(35), which is the base flow. The leading-order equations of
these perturbations will be found as a linearization near this
base flow of the double-time-scale equations for the core
(17), (18), and for the filament motiofB2)—(33). This gives
the equation$Egs. (39)—(41)] of the dynamics of the small The base flow is the one-time scale solution given in
axial variations around the one-time base flow. From thes&ec. IV and is without axial variations. Here, one has to
equations the eigenvalue equations for linear Fourier modegstrict the form of the perturbations to the axisymmetric
[Egs. (59)—(61)] are given for the stream function. This ei- axial variations, for they are the perturbations we are inter-
genvalue problem is then solved for both a Rankine and &sted by. In that sense | will not consider normal-time per-
similar core. turbations without axial variations of the relative velocity

This study is more general than previous ones becaudield or of the centerline. This induces the two following
the vortex filament of the base flow is not restricted to beassumptions. The perturbations of the relative velocity field
circula®?”%nor straight®=3!In the studie®>°of the sta- have axial core-variations and are assumed to have null axial
bility of straight vortex filament, the characteristic length- average. With this assumption and with the uniqueness study
scale that is used is the one of the thickness of the filamerf?f Appendix C we deduce that these perturbations have no
and so the long-wavelength limit has to be carried out to1ormal-time-scale  dynamics, i.e, M(7®)=0 and
obtain ourO(1) wavelength regime, in which the character- M(W®)=0. Moreover as the motion of the centerline at
istic length-scale that is used is the one of the radius ofeading ordeiX(?) is a normal-time-scale dynamics | assume
curvature of the filament. that the leading-order centerline is not perturbed, X%

This study is a linear stability analysis in the small thick- =0. These two assumptions are not restrictive; they only
nesse limit and in the moving frame of the perturbed flow. means that in the perturbation we do not have the bending
The coordinates are local coordinates in this frame and armodes of the one-time scale, which have already been stud-
not local coordinates to the base flow. The perturbation, aed elsewheré®!

p©=p© 4 4O,
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B. Two-time-scale linear equations of small axial
variations

Axial core-variations of axisymmetric shape 4415

for the jump on the interface. The continuity of the normal
velocity (25) becomes

~ (1)) — %0 0)1) £t(0

1. Continuous vorticity field Mg l)= =3 Onw@]155 . (43

From Eqgs.(17)—(18) we deduce that at first order in the The kinematic boundary conditiori26) becomes
;mall amplitudeﬂ the perturbation of the relative velocity 950 i
field satisfies — —TUM+ w0510 =0, (44)

K ® Ay K ® .

o0~ +2(/,C<1> =0, (399  Wwhere all velocity components are taken on the free bound-
aT Y gz Jz — S{0)=
aryr=9 .
(9'{7,0(1) 2 0’;]%(0) (;)T#C(l)
D2 o ;I_C(O) — +G = =0, (400  C. Dimensionless form of the linear equations
| define the following similarity functions for the pertur-
where :
bation
2 C(l)DZ 8 C(l) _

g= df ydl y*:nZZy/(SZ’
These equations give the short-time dynamics of the small . —
amplitude axial variations in the filament. T =I'7/&,

. . _ (0)2 o
At first order in u the raveragesM(v'”’) and - =z§/§§,

MW are given by M(v©@%) = M(p @+ 2y(©5 )
=@ 1 2O MG = as  M@F@)=0, and
M%) =w(®? This means that the small perturbations of
the relative velocity field have no normal-time-scale dynam-
ics as it has previously been assumed. From B2§3.we can
check that the leading-order centerline is not perturbed, i.e.,
X(©=0, as it has previously been assumed.

From Egs.(33) we deduce that the perturbation of the
filament velocity satisfies

Kx O =gO)T,

PN =yeIT ),
7*O=5O 8T,
WO =FOsT,

Xx0W =K. p(s 1)/(52KO(s,1)).

- I'KO(s,t) For a vortex with the vorticity inside a vortex tube | also

aTX(l)(s,T,t)=4—(AC +ACb(s,t),  (4)  define
where S* 10 = 510/ 50),
2 e - = -
ACU=4Fi2 ZTl)(O)E(O) dr_, p*(o):(_gt(O))Zp(o)/I“Z.
0 These similarity functions are now used to simplify the sys-
1/{47)\2 tem of linear equations for the small axial variations.
0 0

ACw=5| 2rw( WO dr.

This shows that for a curved vortex filament the perturba-l. Continuous vorticity field

tions with axial variations induce small oscillations of ampli-
tudee of the centerline and that these perturbations are in the

With these functions the syste(@89)—(41) becomes

binormal direction and proportional to the curvature. The  gK*(© ¢*°< ) ce()) oK* (0
system of Eqs(39)—(41) gives the dynamics of the small pyEa— —y* —op PRy ——=0, (49
axial variations around the one-time base flow.
PRV el PAELE
D*2 lg* + k@ +RG* ﬁz* =0,
2. Discontinuous vorticity field T (46)
For a vortex with the vorticity inside a vortex tube, the @ 1
continuity of the leading-order pressui23) becomes = E(ACUJFACW)- 47)
310 ,
m'2=- %”Q(O) 11, (42)  where
S
' o o =200 ey
where | used Eq(13) to have[[p;||=[[v @]}/ 6'®). Here
and in the following | use the notation & ( S )2
TEY=1(8 ")~ £(310") 5189
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Tc**(o)dy*, S**t(o):31(Sw(t))efiw:r*+in2,
y 0):ﬁ(y*,sw(t))e—iw:;r*ﬂni.

ACU=4wzfl_c*<°>
0

://* c(1)

AC,=167° f . Rw* (@) dy*, 1. Continuous vorticity field

andD*2= 4y* Dy The linear system satisfied by the eigenfunctions is

K=—2n 5% g, (56)
2. Discontinuous vorticity field 420 \ o
For a vortex with the vorticity inside a vortex tube, Egs. d—fz SavF? KO+ —= Su zﬁ;f;i)y* =0, (57)
(42)—(44) become y 9y 9
[1p* (@)= =3O p* ©7), (48) 0= (jw’c*(o)—lfdy* +J 4S,w* @ dlf dy*>,
ki 95+ o Y e
58
[ LA - )
where\ =27n 53/ (S 6w?) and
9S*tO) gy C(” 9S* o 1—o\S. gD
(0) — g= Swihys
a7 T g TRWTT =0 0

The substitution ofC from Eq. (56) into Eq. (57) gives

Equations(13) and (16) become the following eigenvalue problem fo}/ and\:

K*(O),C*m .
*(0) J' dy* , (51) dzl’b * -
(w**c(l) e l,b* c(1) (92';#* c(1) A
LY - dy
2 R B gy* oz* dyr V=) =0, (60)
g% (0 -
Sz* =0. (52) P(y*=0)=0, (61)
) o where
As the axial flux satisfies 2 (0) % (0) ec(D)
IC ¢ * gk ok
(0) \2 * 2" Ty*y*y
= —+2 -7 7 7
m(t):<3<0>(t) e, Gy N Sw) =Ny — + 20 S

From Eq.(59) it comes ¢=y* +O(y*2) near 0, where
used a normalization condition to select any eigenfunction of
this homogeneous equation.

the swirl number satisfieS,,(t) =R S,(0), which means that
R is the ratio S,(t)/S,(0) if the axial flux is not zero:
Su(0)#0.

If the base flow is a Rankine vortex core with a uniform
axial jet or a similar vortex, | divide both the axial velocity 2. Discontinuous vorticity field

* (0) *c(1) P ; .
w andy by the initial swirl numbeiS,(0): thebase For a vortex with the vorticity inside a vortex tube, the

flow is then independent of any parameter and in E45—  |inear system must be completed by
(47) R becomes the swirl numbé;,(t) att. For these vor- . 5
tices the stability analysis only depends on this one- [[p]]=—dTu* @], (62
parametelS,(t) and | carry out this study in the following. A »
Tl = — Sullw* @) ", (63)
D. Eigenvalue equations for linear Fourier modes . [ Of
| look for solution of the linear equation@?5)—(47) in p=- j Tz—dy (64)
the form
~ R Sk e d 2d
I,D* c(l):q,(y*1sw(t))eflwnf +|nz, (53) 4Sw< w;*cy* ¢ **C(l) lf )\ d;{l\' ’ (65)
K*©=R(y*,Sy(t))eon ™ +inz (54)  and by the kinematic boundary condition
XEEL=iKO(S,(1))eon ™ Fin, (55 S=\{(18,)g, (66)

where w* —wn5o/r and 2= 2772*3(2)/(5(0)5) For a vortex Where all velocity components are taken on the interfiace

with the vorticity inside a vortex tube | also look for the =510,
perturbation of the interface function and of the pressure in  For a Rankine vortex core with a uniform axial j&,is
the form given by
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A2Iy*if yr <1,
0 if y*>1,

where
)\2
T 4m2(1-\S, /)2’

and for a similar vortexG is given by

A2

RS (1-e VeV . \S, eV
- 471_2 y7\-292 T g
whereg=1-\S,e ¥ /.

E. Examples of solutions

Axial core-variations of axisymmetric shape 4417

05

05\

RY . . . R
0.0 1.0 20 30 4.0 5.0

FIG. 1. The first eigenmode, / 7= 2.39 of a perturbed Rankine vortex core
without swirl (S,,=0). The solid line is}z(y* ,0), the dotted line isIf///dy*,
and the dashed line i§(y*,0).

In this subsection | solve the eigenvalue equations for a

Rankine and a similar vortex with a uniform axial jet.

1. Rankine vortex core with a uniform axial jet

For a Rankine vortex core with a uniform axial jet, the

solution of the linear syster{b6)—(61) is

ES“))w: 1 1
— = =S
2ns2 M Joi
5'=27m3,(2A),

J1(2A
i 7Iu(2A7) <1,
= A

J2M)A if p>1,

dy  [Jo(2Anm) if n<1,
dy* 0 if p>1,
. | —2731(2An) if 5<1,
k= 0 if »>1,
Jo(2A
) _Jo(2An) if <1,
p: A.7T
0 it p>1,
1

o= — 1o (J2(20) = 48,31(2A)),

wherelJ,, J; are Bessel functions of the first kind, apgl is
theith zero of the Bessel functiady. The frequencyw,, of
these oscillations is

w,=n(w>"+ wio), (67)
where

wS"=2T'S,,/(85),

w?=2T/(859j ).

Without axial flux[S,,(t)=0] the shape of the filament
and of the axial variations of the core are given by

X @ =X+ £2u(50)2XP(0)cog nZ)sin(nw?7)

x KO (s,t)b(s,t), (68)

SO="10 1 2,,5,5(0)cognZ)cog nw?r), (69)
with the associated velocity field

KO=x+ zﬂiﬁ(y*,o)cos(ni)cosf(nw?r), (70)

PO =2u3(y* 0)sin(n2)sin(nw’7). (7D

The selected first eigenmode of the velocity field is
given in Fig. 1 and the associated core-thickness and center-
line evolutions are given in Fig. 2.

This result generalizes, to a vortex filament with a cen-
terline of any shape, the bulging modes found by Kopiev and
ChernysheVon a perturbed vortex of circular centerline. In
the peculiar case of a perturbed vortex ring with a circular
centerline, the modes found in this theory are the same as in
their theory. For example, the interface disturbance of these
bulging modes was given in Kopiev and Chernyshievthe
absolute frame with help of théisplacement fieldepresen-
tation and one can show that it corresponds to the same

FIG. 2. Fast axial-core oscillatioimmoden=4) of a vortex filament with a
perturbed Rankine vortex core without swirl and the induced filament oscil-
lations. (a) Initial variation of the core without perturbation of the filament,
evolution on(b) one-fourth of the periodic) half of the period,(d) three-
fourths of the period.
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binormal perturbation of the centerline and the same thick- 10
ness perturbation as | found. In my approach it is easy to .
understand that the fast-oscillations of the centerline are in 05| &

the binormal direction as the core of the vortex is known to //’J,_
be taken into account by core-functions coefficie@Gtsand
C,, in the binormal term of the equation of motion of Calle- 007 : BT
gari and Ting' It is also easy to see the consistence of my ;
generalization with the theory of Callegari and Tirand of
most studies of vortex dynamics as | use the same coordi-
nates as most authors and | give the velocity field. In this
sense this approach also completes the one of Kopiev and 10,5 0 20 30 3 50
ChernysheV, who introduced their own interesting coordi-

nates and give the components of the displacement field arfdC: 3- The first eigenmode of a similar vortex without swil,&=0). The
some components of the velocity field on their special coor$0ld line is ¢/(y*,0), the dotted line isiy/dy", and the dashed line is
dinates. The frequency of the bulging modes are found to b&(":0)- The associated filament eigenmodifs= —0.096.

the same as the one they found for the perturbed vortex ring _ _
with a circular centerline, provided thHﬂ(ES(O)) is used to  vortex bubble and for the bubble thickness dynamics. These

have a dimensionless frequency. My approach is restricted auations areh used to stufdy a circular vot:tegbvngfbuﬁbl_e alnd
axisymmetric perturbations: the bulging modes on the shortt® COMPUte the motion of a vortex ring bubble of elliptica
time r and the bending modes on the normal-tim&opiev shape. Finally the ultra-fast oscillations of a vortex ring

and Chernyshéconsidered all nonshort wavelength pertur- PUbble are studied on the ultra-short time scale.

bations and so also have the ultra-short-timéynamics of
nonaxisymmetric perturbations on the vortex ring with a cir-
cular centerline. The leading-order velocity fields without axial variations

This study also generalizes, to a vortex filament with aand _Uc(l)=0 (and thu_sI_D_(l):O) are also solutions of the
centerline of any shape, the bulging modes found on a peteading-order compatibility condition&l3)—(16) and (27)—
turbed straight filameft*in the long-wavelength limit. In  (28) in the case of a vortex bubble. The non-axial variations
the peculiar case of this straight filament the result is consisef the thicknesss®(®)(s,t) = s°(©)(t) of the bubble gives the
tent with their long-wavelength limit for the axisymmetric simplification1*(®=S(© (s2©)2 in Eq. (11).

05F N

A. The one-time equations

and bending modes. For a closed vortex ring bubble, theaverage of the
axisymmetric part of the continuity equation at second order
2. Similar vortex [Eg. (B2) in Appendix B gives
For a similar vortex, Eq.(59) gives #=cq+cyy* ) o2n SOF D(t)sO
+O[exp(~y*)] at infinity, wherec, and c; are two con- (P =— 2 * T '

stants. For any value of, the solution of Eq(59) and ¢ where( ) denotes the-average. Herdd*)(t) 0 is allowed

~y* near 0 asymptotically reaches a constaflk(y*  pecause a singularity can exist@t0 and is required to
—), that is zero only for an infinity number of selected satisfy thes-average of Eq(10):

values\; of \. | use a shooting method and a Runge—Kautta o .
solver to find these eigenvalurgS,). The frequencyn,, of a6®©®  189_

I . (2)(t)y= sP(0) ——___ sh®
these oscillations is D) =0 ot + 2 50 g d (73
2I'n 1 PO is qi
0, =— . (72) where §°'% is given by Eq.(27).
550 Ni(Sy)/ 7
1.0
Without axial flux (S,=0,) it gives \;/7==*+3.1,
No/7m=%6.0, andAz/7m==*=9.1. The first three selected
eigenmodes are given in Figs. 3, 4, and 5. os |
With S,=0.1, it gives\,/7=(—3.3569,2.7520) and T
No/7m=(—8.4073,4.4456). The selected first eigenmode //“‘\\\
N,/7=2.7520 is given in Fig. 6. / el
1 oo /'\/// . ———
L
VI. ONE-TIME VORTEX RING BUBBLE l\ "//
L
In this section | give the one-time equations of a vortex 05 Y . . , .
0.0 1.0 20 30 4.0 5.0

ring bubble without axial variations. A special transformation
is then introduced to solve the core equations and the SolusG. 4. The second eigenmode of a similar vortex without swj0).
tions to these equations are given. This gives coupled equahe solid line isg(y*,0), the dotted line islg/dy*, and the dashed line is
tions[Egs.(79)—(80)] for the motion of the centerline of the K(y*,0).
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0.5

00 £

05 L . L
0.0 20 3.0 4.0 5.0

FIG. 5. The third eigenmode of a similar vortex without swi|,&0). The
solid line is g/(y*), the dotted line isdg/dy*,

K(y*).

Thes-average of quasi-stationafgne-time solutions of
axisymmetric equations at second orflegs. (B1)—(B4) in

Appendix B| satisfies

w® o 1 )'s<°> 2D%2)(t)
T LM (74
ow® 1 1 [(w®) 8O D2)(t)
(0)__ (0)
atﬂ?wﬂr§% FoTW
r
(75)

and the dashed line is

Axial core-variations of axisymmetric shape 4419

Z(£,t)=0189(1).
The previous equations become
a[(6P0)250] gy b(O)
2t )= _
2D2)(t,) 7, P (76)
IX
" g(fXg)g—_Dc(z)(t) iz (77

where y stands folW andZ. | then use the following trans-
formation

£1= 8~ (0)?8O=[2— (5"
which yields

2]5(0)

(9 [—
le =4[ £+ (") xe ), 79

The bubble allows to have a solution of the equatié®
= (rvO)+/rin the form

r

p@=_L 400
mr

wherev®(©® is regular afr=0, and to have the associated

circulation field

0_L1 o0

where the leading-order quasi-stationary velocity is without

axial variations andi®=0 as previously stated. Equations
(31, (27), (73), (74), and (75) are a complete set of equa- C. The one-time solutions in dimensionless form

tions for the one-time solution.

B. Transformation of the equations

I now solve Eqs(73)—(75). | use the following transfor-
mation first introduced by Callegari and Tin@ften referred

as the transformation of Lundgréin
t
tlzf SOt )dt,
0

£/,

W(& ty) =S (t)w,

| define the following similarity functions

(O)E/F,

v* 0=y
p* (0 =, 0O 5T

2 -1
* (0) — g(o)i ( Z)
T \Vy

s

-2
(t)) 1=V gV

w* (0 =0 ( ) (
r 50 VO

K*(O)ZIC(O)/F,

C* w(0) — Icw(O)/I‘,

1.0
2
1 [ s

_'. *C(l): c(l)_— (1_V b/V )1/2,
05 w w 1_‘30 ( S(O)(t) o'¥o
00 — where 8, Vo=(80)2S’, andS{®) are the initial thickness,

\ T volume, and length of the vortex anfl V=(6)?S®, and

asl S their values at time.

' If the fluid is inviscid (#=0), the solutions are in the

form

o0 10 20 30 40 50 é«*(0): 4«3 y),

FIG. 6. The first eigenmode of a similar vortex with sw&|,=0.1. The

solid line is fp(y*,o.l), the dotted line isifﬁ/dy*, and the dashed line is

K(y*,0.1).

1
/C*<°)=/C3(y)——?1 féo(y )dy’,
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U*(O)zKS(y)

16

w* (@ =wg (y),

where

=(7 (1+8(1) = B(1),

with B(t)=V PO t)/(Vo— vV 5©) and §(t) is thee-stretched
thickness of the core

V=(6)280 =1+ 2O 8O

Here, (C5(y),w§(y)) are the initial circulation and axial
velocity fields.
The equation of the filament motig81) is
KOs

|t
aXOx,t)=A(s,t)+T T)[Iog(s‘o)/s) -1

+C, (1) +Cy(t) + Wq(t) b(s,1), (79

where B(t) [and soV P©)(t) or 5°©)] is obtained from Eq.
(27) and is solution of

~ [ B(t) B(t) |tk SO

Pu(m)— O(W) +@(Cp[ﬂ(t)]
+W[B(1)])=0, (80)

with

P, =4m?(5*)2(p® () =P, )T,
T:')go:47T2(Eg(o))2_EgolI‘2.

These coupled equatiori¥9)—(80) for the motion of the

centerline of the vortex bubble and for the bubble thick-
ness dynamics generalize the equation of motion 0{1\/
Genoux? to a non-potential vortex bubble with a filament of
any shape and with axisymmetric time-variations of its thick-

ness. The expressions of the core functi@pét) andC,(t),

Cp andW that appear in these equations are given in the

foIIowmg

1. Inviscid fluid
The associated core functions are
Cv(t)=3+ lim ( 2 fy’c,*z(y )d EIog(y
27 +8(D) 72

1
+ 5 log(1+ B(1)),

1 %
+ﬁ(t))> —§|09<@

Cu()=—4m4(SP1S9(1))3 f:wa”(y)dy,

= KG*Y)
Co(t)=—2728(t) fo (eroﬁwdy,

Daniel Margerit

. . (0) t
W) =W(0) \ ooy \/%,

whereW,(0)=4m250Y/T2.

2. Discontinuous vorticity field

For a vortex bubble with the vorticity inside a vortex
tube, thes-average of quasi-stationafpne-time solutions
of the first-order interface equati¢kq. (B6) in Appendix B
satisfies

aﬁ“’) 159_
% 259°

where | used the value ¢&(®u®®)). From this equation and
Eq. (73), it comes

ProO=y t0(0)+ y b(0)

C(Z)(t)
) '

St =

(81)

-y, (82)

where V 1= (5192 50)(t) is the volume of the vortex
tube. This equation is coherent with the volume

V=V +V POy g0
previously introduced to describe the volume of the continu-

ous vorticity field in an inviscid fluid ¢=0). In this case, |

choose the thickness of the vortex to bes'.
For a vortex bubble with a core of Rankine type and a
uniform axial jet:

1 F if 0<y<1
K5 (y)= . (63
— if y>1
2 Ty==5
. Sy(0)/ 7 if O0<y<1,
W (y)= 0 if y>1 (84)

here S,(0)=mgy/(I" 5gy1—V OB/VO) is the initial swirl
umber, andmg is the initial axial flux. The swirl number
S,(t) at timet is defined byS,(t)=m(t)/(I' 5y1-V ?/V),
wherem(t) is the axial flux at timé. These two swirl num-
bers are related by

B E 1) 0

S(O)(t) '

It comes
1 % 1

Cv(t)=—§|0g @ +E 1

1Ly /T)(1-y)+y]?

+fo y+Bn )
Cu(t)=—4S3,(0)(SP1S9(1))?,
1

Cot=— 50| 5 D

(L /T)(1-y)+y]?
*fo (y+B(1)? d)
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The relative velocity field of this Rankine vortex core with a

uniform axial jet depends only on two parameters: the ratio

I'1 /T and the initial swirl numbes,(0). It depends on only
one parameter if the axial velocitw*(®) is divided by
Sw(0).

In the case of a potential vortex ring bubblE,& 0),
the added conditionrw=0 implies the following leading-
order velocity fieldv (=T, /(2#r) andw®=0. It comes

1 (V) 1 141
Cv(t)=—§|Og @ +§ 1+|097 s
1 _
= _—— b(0)
5 log 6™,
Cu(t)=0,
1
Cp(t):_i

D. Study of typical cases

1. Isothermal transformation

In the peculiar interesting cas&=1 (isothermal
transformatio’), Eq. (80) is the following polynomial of
second degree ir:

x2+ax—1=0,

where

— 159 1
X= B(t)/ﬂ / gO/P + (0) P

B 1 (0)
a=W,(0) / (J— -+ %)

The solution is
1
E(—a+d4+a%.

In order to find the thickness of the bubh#&()(t) at timet
we computea, deducex from Eq. (85), obtain+/8(t)/B(0)
from the definition of x and use B(t)/B(0)

=°0)(1)/ 559 . This thickness exists for any values of the

(85

parameters and at any time. It decreases with increasing val-

ues of the surface tension parame\?\ig. Its initial value

50 is found by solving

_ 2
(pO()=P,~Pgo) (35" *+Y 5" =g—,  (86)
which is Eq.(80) att=0.
In Fig. 7, | give the initial thickness 55 as a function

of the surface tensiorlY. The physical parameters are
I=1nf/s, Py =0.2870(273-20) atm/ni/kg,  p(x)
=101.3 atm/rﬁ/kg P,=2.026 atm/m/kg. Let us recall that

this surface tension and these pressures are divided by the

mass density p=1000 kg/n? and that 1 atns1.013
X 10° Pa.

Axial core-variations of axisymmetric shape 4421

0.03

0.025¢

0.021

0.015;

0.01}

0.0051

%

05 1 15
FIG. 7. Thicknesse 55® (m) of a potential vortex ring bubble versus
the surface tensioY’ (Nm?/kg). The physical parameters afe=1 n?/s,
Pgo=0.2870(273-20) atm/ni/kg, p(=)=101.3 atm/m/ky, P,=2.026
atm/m/kg.

In the case of aircular vortex the global integrah is
A=T'K log(8/27)b/(4) and the velocity of this bubble is

1 —
- —+47%Y s0r?|.

FKI
—Kilo
J 2

41

V

£oPO

Figure 8 shows the velocity as a function of the surface
tensionY of a circular vortex ring bubble.

Figure 9 shows the evolution of a perturbed circular vor-
tex bubble in the moving frame of the nonperturbed vortex.
The perturbation is of elliptic shapenode 2 of the polar
Fourier expansiot) and its amplitude is 0.15. The compu-
tation was performed with thEZ_vortexcode(see our sub-
mitted paper, Margeriet al, “Implementation and valida-
tion of a slender vortex filament code: Its application to the
study of a four-vortex wake model’by implementing the
bubble thickness equatiori85)—(86) and the Weber number

W, computation.

2. Almost adiabatical transformation

In the peculiar interesting cage=1.5 (close to the adia-
batical transformatiolt k=1.4), Eq.(80) is the following
polynom of degree three ix

0.4f

0.3

0.2+

% 05 1 15
FIG. 8. VelocityV (m/s) of a circular vortex ring bubble versus the surface

tensionY (Nm?kg). The physical parameters are as in Fig. 7.
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t=0 t=4.32
t=1.44 t=5.76
t=2.88

FIG. 9. Numerical simulation of the motion of a potential vortex ring bubble
of elliptical shape (mode 2, amplitude= 0.15) in the isothermat=1 case.
The physical parameters are as in Fig. 7 ahd0.7. The frame is moving
with the unperturbed circular vortex ring bubble velocity.

a
x3+bx2\Ja— SX— 1=0,

where

x=\B(1)/B(0)/(Pyo/P,)*",

a=(SY/8)(Pgo/P,) 2P, ,

b=W,/\/B,.

The solution is
ab?
d

a

5 2b+/al|/6

x=|d+6-=+4

with

d3=—18a%%+ 108- 8a%%?

+6v3\—2a°—a’h?—36a* %+ 108- 16a%.

This shows that a thickness of the bubEPéO)(t) not always
exists. The values allowed far is between 0 and a maxi-
mum value, which decreases with increasing valuds afid
so of the surface tension parametdf,. This maximum
value is almosta=4 whenb=0. The thickness decreases

Daniel Margerit

E. Ultra-fast oscillations of a vortex ring bubble

The potential vortex cannot support axisymmetric axial
variations on a short-time, because the only potential fields
that are solutions of the two-time-scale equations wf
=T';/(27r) andw(®=0, which are without axial variation.
However, axial variation are possible on a ultra-short time
t=t/e?

In this subsection | give the system of equatidksys.
(92—(95)] for the ultra-short-time dynamics of axial varia-
tions on the vortex ring bubble. | solve this system and give
a closed equatiohEq. (97)] for the the ultra-short-time dy-
namics for the thickness of the bubble.

1. General equations
The bubble allows to have a solution of the leading-
order equation of continuityri(®);=0 in the form

_DO(s,t,7.)

r

u(©®

At leading order the Navier—Stokes equations are

2

u(® ()
0

T TR s @
@

— +{%u®=0, (88)

at

— +w?u@=0, (89)

at

where [ = (rv(@)/r is the leading-order axial vorticity.
Equation(87) gives the pressure

p©@=_ fj v
r

where the log term has to be matched with the outer veloc-
ity induced by a sink concentrated on the leading-order cen-
terline X(©.

The leading order of the axisymmetric part of the dy-
namical equation of the free-boundd) is

(0? D)

D02
2r?

dr+p(e)—

logr, (90

T

7 sb(0)
65_ —u®=0,
Jt

(91)

where all velocity components are taken on the free-
boundaryr= 6*®* . As the thicknesss®® is given by Eq.
(27), this Eq.(91) is indeed the equation faP(®) and gives

1.9(8°®)2
=

DO (92)

at

with both increasing values of the surface tension parameterhe leading-order of the axisymmetric part of the pressure

W,, and ofa.

jump (9) is
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2 — The dynamical equation of the bubble thickness
- I\“Cyst,nb) oy, _ o
pO(sLOH)=| —| ———""4p(») 6°O)(s,t,7,t) on this ultra-short-time is
2 (5b(0))2 5
GO\ POy
1] [ g5p©@ 2 (P02 _ — | + —log 6@
_= | + 20 og PO ot at?
2
2[\ 4t at 0| &
Vb k¥ :2(p(m)_Pv)_2PgO<W
=Pv+PgO m —%, (93 B B
2 Cos.t,t) | 2Y ©7
where 272 (P2 O’
_ 2780\ = O (Fstrt)
Co(s,t,7,t)=— o —— . where
r 5D(0) r
(0) 27 (0)( \[ 5P(0)( <)72
Here, we used the relation Vs _ 0”00 ()[4 (9)]7ds
0 - — — '
PO’ o WO p2m500(s ) 2O(s, 7, t,t) 12ds
- ———— —logs
2(629)2 gt _ [ 3O ? = KO (g, 5 mh)
5 Co(s,t,rt)=—2m — ,
1[[38°0\° P02 T o (gt (802
=—c —| + ——"logs*?|,
21\ ot at and

which can easily be checked from E§2).

Equation(93) is the equation of the thicknes®(® of
the bubble. It is coupled with the ultra-short-time dynamics
of the core, given by Eq$88)—(89), which can be written

9&® gg))
{__ + LTD(O)Z 0, (94)
ot
(0)
ow'®  w o
—+—D%=0. (95)
at

The system of Eqs(92)—(95) is a closed system for the
ultra-short-time dynamics of axial variations on the vortex
ring bubble.

2. Solution

| use the following transformation

E=T2—(8"9)2,

which yields
Jd
oo, (96
at

where y stands for(®) andw(®). The solutions are in the
form

(0= ,81),
Fl 1 §1 , ,
’C(O):IC(O)(gl 1Sy T!t): E + E fo g(O)(gl !Sl T,t)dgl,

KOs, 7t)

2 (© ,
r

w@=wO (g ,s,7,1).
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Here, the leading-order vorticity functionf(®[¢,=Tr?
—(6°©)2 s 7.t] is given initially and its short-timer and
normal-timet evolution are given by the equations at next
orders. This equatio(®7) generalizes the one of Gendfixo

a nonpotential vortex bubble with a filament of any shape
and with axisymmetric axial variations of its thickness. The
stationary solution of this equatidgwhen it exist$ is without
axial variations and satisfies E@O).

VII. CONCLUSION

This two-time-scale asymptotic approach allows us to
derive, from the Navier—Stokes equations, the dynamics of
the axial core-variations of axisymmetric shape on a vortex
filament. This gives an extension of the one-time-scale
asymptotic theory of Callegari and Tihgf vortex filament
motion. This asymptotic theory is also an alternative to dif-
ferent ad hoc models of vortex filament with axial core-
variations proposed by Marshaif, Leonard® and
Lundgren® The dynamics of these axial variations is on a
short-time scale and is inviscid at leading and first orders.
These axial variations induce a small amplitifiest-orde)
motion of the curved centerline on the short-time scale. This
motion is in the binormal direction of the leading-order cen-
terline. The solutions of the two-time-scale equations have
been given for axial core variations of small amplitude. More
theoretical and numerical work is required to study the finite
amplitude regime.

The theory of Genou¥ of vortex ring bubbles has been
extended to a vortex filament bubble with a centerline of any
shape and with a nonpotential core.

The axisymmetric part of the velocity field at first order
(it is the next order to the leading orderas proved to be
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composed of two parts: a part without axial variations and &s s and 7 are parameters in these equatidtisere are no
part with axial variations. The expression of this second pars-derivative norr-derivative, their solution is the same as in
was proved to be unique and to be related to the locathe one-time analysis. Following this analysisdefine a
stretching of the centerline. This form of the velocity field at stream functions®®) by

first order was chosen by Margetitwho gave the one-time 1

dynamical equations satisfied by the part without axial varia- ~ yal)=_ ya1) = gng yal = — ,/,ré(l>+r—v<0)K<0) cose,

tions of this first-order axisymmetric part of the velocity ree
field: it is the generalization of the Callegari and Ting theory (A6)
to the next order. and expand it in a Fourier series
The implementation of the first-order thickness correc- "
tion in a numerical code of slender vortex filament motion is Y= ¢y cosnp+ ¢l sinne. (A7)

currently under investigation. The associated first-order cor- ]
rection to the leading-order corrected vortex filament meth- ] ) o
ods of Klein and Knid*for slender vortex filament is also The only non-zero Fourier component§;) and is given by
under investigation. | hope to extend these computations to <111)(r_s t) TIZXD(X,S, 7,1)dX
vortex filaments with thicker cores and to be able to perform = z

- - - KOst OT,s,mt)  Jov9zs,7,1)]°
guantitative comparisons between these numerical computa- ’ =D =D

tions gnd direct numerical computation of the Navier—Stokes T w02 T2
equations. + fondH > (A8)
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APPENDIX A: THE LEADING-ORDER SHORT-TIME expression with derivatives of the velocity field would be

ASYMMETRIC DYNAMICS IN THE FILAMENT more difficult to use because of the contributions of the

. . . ) ) delta-functions that would be in the integrals. Equatias)
In Fh|s appendix I.g|ve the Igadmg-order eq.ua.tlons'of theextends the Callegari and Tihgquation of the stream func-
ﬁlhort-tlmeT rela_sy(rjnmetrl_c dyna|m|csdfgr ar)]('al variations in theyjq, 4V to axial core-variations of the leading-order veloc-
llament. This dynamics Is slaved by the axisymmetric one; fie|d and to discontinuous vorticity field.

These equations come from the asymmetric part of the equa- The asymmetric velocity field L(a(l),va(l),wa(l)) and

tions at first order. They are used in Sec. Il B to perform thethe asymmetric pressuma(l) depend only on the leading-

matching between the outer and inner velocity fields and s@qar velocity field. From Eqgs(A6), (A3), and (A2), it
to obtain the equation of motion of the centerline. A stream. s ’ ' ’

function is introduced and the whole asymmetric field is de-

scribed with this function. The stream function solution is ~ udY=u{} sine, (A10)
given for a continuous and discontinuous vorticity figle). al)_ (1)
(A8)] and for a vortex ring bubblEEq. (A20)]. v7=vqy COSp, (A11)
a(1) — (1)
1. General equations w Wiy COSe, (A12)
The equations of the asymmetric componarftsv?, u? p*®=p{7 cose, (A13)
at first order are with
1
Lo+ U= —v @KV sing, (A1) uiy = — I,
1 1
@a P sy L aw_ 02 o oiy = — (W) Ko@),
(O — g —pa =W O KO sing,  (A2) 0
B W=~ O,
Wa(l):Sa(l) , A3 . 2
o w (A3) Pl = — gD (0 TR OO (0D

2
v QUM — 2y @pa 4 paN = _ (O K O cose, (A4)
2. Discontinuous vortex field

where . L
- For a vortex with the vorticity inside a vortex tube, the
r . first-order asymmetric part of the condition of continuity of
SaV = — [ ud W — W@y OK @ sin 7. A5 _
W=yl r v d B the pressuréd) yields
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ga(l) ) S_%L)(r_vsi ’T,t)
[p*= g (00 KOs, 005,70

where 521 is the asymmetric part of the first-order thick-
ness of the tube. Here, | used Ed.3) to have[| 0)]]

=[[v©*]]/6©). The same jump can be found from Egs.

T THeXDxs O w0’
:fgw» o0 (z,5,7.)] f 0”07 12

_ b(0)\2 —
(A13) and(A8). The first-order asymmetric part of the con- + (677) + 5Py f —1 5dz.
dition of continuity of the normal velocity7) gives 2 0z %(z,s,71)]
_ta(l) (A20)
ua(l) — (0) _
[[u™11= 5t(0> o v The behavior off o) 1/(z[v(%(z,s,7,t)]1?)dz at infinity is
and so wrIT, where | used Hpital’s rule and the behavior ofl®) at

infinity.
[ 31]=6\PI[0 ],

where 520 = 5{1) cose. The same jump can be found from
Eq. (A8). It means that Eq(A8) of ¢! is correct even
through the interface. The asymmetric part of the kinemati

APPENDIX B: THE FIRST-ORDER SHORT-TIME
éAXISYMMETRIC DYNAMICS IN THE FILAMENT

boundary condition at first order gives In this appendix | give the first-order equations of the
- ~S(0) short-time axisymmetric dynamics for axial variations in the
5‘;‘”):Wua(1). (A14)  filament. These equations come from the axisymmetric part
1%

at second order. In the two-time scale framework the time-
Here, all velocity components are taken on the interface average of these equations givéSec. Il1CQ) the leading-
=510~ This equation yields order normal-time equations in the filament. In the one-time

(normal-time framework the compatibility conditions to

W=y V1O, (A15)  these equations also gi¥8ecs. IV and V) the leading-order
one-time equations in the filament. The one-time solution to
3. Vortex ring bubble these equations and its uniqueness is studied in Appendix D.

For a vortex bubble, the first order for the asymmetric

s . 1. Continuous vorticity field
part of the continuity of pressur@®) is

The first-order compatibility equations of the one-time

b ) . . )
(1) o1 (1) 02— YK ) (A16) analysis become the dynamical equations of the axisymmet-
P11 gb(o> ' ric part of the first-order relative velocity field. At first order
—b(1) ; . , % 24,(0),,¢(1)
where 52" is the asymmetric part of the first order free- 1) _ f_ 2v v dr (B1)

boundary of the bubble. Here, all fields are taken on the
free-boundarys®®*. This equation is the equation of the
thicknesss2{" of the bubble. The first order of the asymmet-

T

and at second order

ric part of the dynamical equation of the free-boundd)  (Tuc?®);+rwst =50, (B2)
is
ot vt (Dye1) 4 #0),c(2) (1),,(0) (0),,¢(1)
5b(0) +§°1u°1+§ Uc +WCll) +w UC
~ha(1) _ z z
54)3( )_Wua(l)_ (A17) aT
. =5, (B3)
Here, all velocity components are taken on the free-boundary
T= 8% This equation yields awem
P 1,0 WU w4 pi o wew(
. : . . D= gl
This last equation combined with EqéA16) and (A13) +w(© c( ‘Sc( (B4)
g|(\g?s the following boundary conditions for the equation ofWhere W= W)/ is the axisymmetric part of the
1 first-order axial vorticity and
007 4 0%) | T () 40 (A19) PR RNC Y
- C
KO 5c<1>:_Tr ) Fue),

where | used the second boundary conditipft)(5°(©)
; : 1) D 5y T O
=0. The only solution of the equation ‘1"(11 with these two (1) _ (0,09 v rJr v
.. . Sﬁ =W UZ ) - + v — -/,
boundary conditions is o r
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oV 0.(1) o0 ow®
SC(l)_W(O)W(O) _|_ 0) — WO
P () ot
0
+_(r_\/\$))i
V————.

Here, | used the first-order asymmetric field to state that th
e-average of{Mu® is My and that the one of
wHu@ js Wiy, This system, of unknowp®®), @),
we®, andu®®, is closed.

2. Discontinuous vorticity field

For a vortex with the vorticity inside a vortex tube the

interface dynamics has to be found and the previous equa-
tions have to be completed. The second-order axisymmetric

part of the condition of continuity of the pressu yields

“qte(1)

[[peH]]= [ 11,

SO

where 5 is the axisymmetric part of the first-order inter-
face thickness. Here, | used ELl3) to have [[ O)]]

=[[v(®?]]/64®. This jump condition means that the expres-

sion(B1) of p¢?) is not correct through the interface and has

to be replaced by

pe()

ZU(O)Uc(l) 5tc(1)

if T<&©

)
ot

[[v(o) 1]

9 (0, 6(1) o
————dr_if T>60
r

The second-order axisymmetric part of the continuity of

the normal velocity(7) yields

[[ue®1]=| 62"~ E;)6‘<°>)[[w<°>]]+6t<°>[[w°<1>]]
+ 877 SN [w ). (85)

Daniel Margerit

This system, of unknowp®®), v we@ 2 and

5 s closed.

3. Vortex ring bubble

For a vortex bubble the interface dynamics has to be
ound and the previous equations have to be completed. The
irst-order of the axisymmetric part of the continuity of pres-
sure(9) is

b(0)\ K[y, b(1) b(1) K
peb) 4 L@~ p. Vo Vo' V
WG ERY, 8(0) y b(0)
__ gbe)
(5b(0))2

where all fields are taken on the free-boundaMf)*. This
equation gives the axisymmetric part of the thickné%§%
of the bubble.

The first order for the axisymmetric part of the dynami-
cal equation(10) of the free-boundary is

Fabo)
— L) (O GO 1 TD(0) (L) 4 (O 5DI0Y gbe(t)
aT
1
=S, (B8)
where
Py oD
1) _ 0 “b(0
Sheh = — +w )W5Z( )

In this equation, all velocity components are taken on the

free-boundary = 5°©)*. The bubble allows to have a solu-
tion of the equation of continuityB2) in the form

D2)(s, 1,1)
r_

c(2) +y@c(2

where u®®® is regular afr=0. As the thicknesss*“®) is
given by Eq.(B7), Eq.(B8) is indeed the equation fdp®(?).

This system, of unknowrp®®, p¢@) we@) yec)
D) and 5°%Y), is closed.

Here, | used the first-order asymmetric field to state that the

¢-averages 0b V516 and ofu™’s'™) are zero.
The axisymmetric part of the kinematic boundary condi-
tion at second order gives

9ot

o _uc(2)+w(0)5tc(1)+ 5t(0)Wc(1)+ (0)5t(0)§c(1)

— s

where

(B6)

In this equation all velocity components are taken on the |

interfacer = 640)=,

APPENDIX C: UNIQUENESS PROBLEM AT LEADING
ORDER

In this appendix | consider the uniqueness problem of
the solutions to the leading-order one-time compatibility
conditions. These equations are obtained if the short-time-
scale derivative is removed from the leading-order short-time
axisymmetric equations(13)—(16) for axial variations.
Leading-order velocity fields without axial variations and
u¢@=0 are solutions of these leading-order compatibility
conditions. As we will see, the study of small perturbations
around the solutions without axial variations seems to indi-
cate that they are the unique solutions to these compatibility
conditions.
introduce a small stationary perturbation

(T 5O F0) BO ) K) of a flow without axial
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variations, denoted byut® =0y w® p© ye@) () APPENDIX D: UNIQUENESS PROBLEM AT FIRST
At first order in its amplitude, the perturb_atioﬁ satisfies ORDER
In this appendix | consider the uniqueness problem of

e 9,,(0)=(0
PO=— J L)U()dr_ (c1)  the solutions to the one-time compatibility conditions at next
T r order. These equations are obtained if the short-time scale
Dy (0) derivative is removed from the first-order short-time axisym-
(ru )+, =0, (€2 metric equationéB1)—(B4) for the axial variations. Assum-
ing that the compatibility conditions at first order have the
(O + w5 =0, (C3)  only solution without axial variationgas suggested in Ap-
pendix Q it is found in this appendix that these compatibility
Wt + 0+ wOF O =, (C4  conditions at second order also have a unique solution. Here,
this solution is given and proves to be the one introduced by
or the equivalent system Margerit” to generalize the Callegari and Ting thebmt
- next order.
PR =0T, (CH | define
1 PR
Ay gy Mty + yK(O)k(ZO)_‘ly‘_ﬂ;(yly)f =0, (C8) 5T g0 SO
wheref =9 If y$P=0 then Eq.(C5) yields gL 5= fsgg ds’.
=0 and soy$=0 is the only physical solution. Equation 0
(C6) then yieldsK{¥=0 asK(®+0. So the only possible 1 1 80
stationary perturbation is without axial variations. y#f*) X(Z)Zg uc+ S50

#0, Egs.(C5—(C6) yield
BY=weD 17,

f"+G(y)f=0, C .
) €7 The subtraction of Eqs(34)—(35 from Egs. (B1)—(B4)
lim f=0, yields
y—+ee % 250y, ¢(1)
peh=— J*Tdr_’ (DY)
f'(0)=0, r r
TRl
R0 = (007 yelD (rx?)r+1ps’ =0, (D2)
4 =y “fy
" {Ox @+ W@y =0, (D3)
Wi
(0)4-(0) “@)X(z)“Lpg(l)JrW(o)&(zl):O’ (D4)
YK
G= #_ 'zllf'(l)l-ll’c'g’ly)}/ ‘_/’scf(l)z- or the equivalent system
(D o = O D5
For most flows ¢, K@), f=0 seems to be the vk Y ©3)
unique solution of the linear equatiq@?7) and so the only o(1) 1 (0) x-c(1) (1)
possible stationary perturbation seems to be without axial 4y iy fyy+§’C kG =4y idyyy =0, (D6)
variations. The velocity fields without axial variations seemsWhere

to be isolated solutions of the leading-order compatibility
conditions. SouZg& used a standard comparison principle for f= ¢9(2> '
guasi-linear elliptic operators and proved that there are no ‘

other stationary solutions of the Bragg—Hawthorne equation 1 .2
(22) than the solutions without axial variations. Klein and X=— 5%
Ting®* assumed that these compatibility conditions have sta-
tionary solutions with axial variations and derived the equa- +
tions of evolution of these fields in a one-time analysis on the T
normal-time scale. Unfortunately, as was pointed out by
Souza(private communication no field with axial variations

and without axial velocity at infinity is solution of the As the linear operator of the systerti31)—(D4) and (D5)—

leading-order compatibility conditions. (D6) is the same as the one of Eq€1)—(C4) and (C5)—
For a vortex with the VortiCity inside a vortex tube, it (C6), the unique solution of these systems fis0 and

also comess'((s,t)=5"O)(t), and for a vortex bubble it (<=0, The unique stationary solutions of the compatibil-

R 7 z
comessO(s,t) = s°O)(t). ity conditions for the first-order axisymmetric field are

Jee() =D
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v s, )=V (T 1),

~604g

g
<0>S_) ds’,

S
c(1) —wu@
weH (s, t) =w!'H (T t) + fo S0

1_'8(0)

2's0

where the evolution ofy"™),w"() in the normal-time scale
can be found from
third-ordert’

For a vortex with the vorticity inside a vortex tube, the
subtraction of Eq.36) from Eq. (B6) written without the
short-time scale derivative yields“")=0, i.e., 5°()(s,t)
= st(t).
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