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Singular perturbation equations for 3-d excitable rnedia

In, this paper the idea of Prandtl's boundary layer is erported to a Jield other than fiuid dynamrcs. Ercitable media,
sttc:l-t o.s ner'ue fibers and heart tissue, ctre typr,cally'modeLled with reaction-dzfJusion equations contain,ing two chemzcal
species that euol'ue on uery different ta'me scales. In three dimensions solutions of these equations take the form of
rotatir-tg scroll waues (interfaces) end'ing on filaments. The ratto of the two times scale def.nes a natural small
parameter eps'ilon. Erytloiting the inherent smallness of ey,,szlon, singular perturbation methods are used to deriue
three-drmensional equations for each of two boundary laye'rs : r,nterface region (scroll) and filament region (core),
and for the associated outer region. Fo'r scrolls with untform twist about straight filaments, this matched asymptotic
erpansion method is also used to dertue free-boundary ecluations not only at leading order but also at first order.
Both orders are ual'tdated against full solutions of the reaction-dtffusion equations. Usr,ng these two orders and 'wrth

no adjustable parameters, the shape and frequency of uaues are correctly ytredicted for most cases of physi,cal interest.

1. Introduction

In three-dimensional excitable media, propagating waves of excitation typically take the form of scrolls which are
organized about one-dimensionai fiiaments[13]. These filaments have some similarities to the vortex filaments found
in fluid dynamics. However, unlike vortex filaments in fluid dynamics, fiiaments in excitable media can have associ-
ated twist. Figure 1 illustrates this by showing a scroll wave which is uniformly twisted along a straight filament.
The purpose of this paper is to show how the idea of Prandtl's boundary layer can be appiied to excitable media.
In particular we derive equations predicting the shape and rotation frequency of scroll waves such as in Fig. 1 and
through these equations we are able to understand and predict the role of twist in shape and frequency selection.

\!'e begin by considering the following partial-differential-equation (PDE) model of excitable media[1] written in the
space-time scales proposed by Fife[6] :
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e2ôu1ù = e2v2'u* u (1- ,) (, - +) ,

du/0t = e(u-u).

(1)

(2)

Such two-component reaction-diffusion models capture essential properties of excitable media and are widely used

in theoretical and computational studies, e.g. [2,3,7,8,9, 14j . NIode] parameters a and ô control the excitation
threshold and duration and will have values a = 0.8 and ô = 0.1 throughout. The pararneter e is small, reflecting
the disparate time scales of the fast activator variable u and slolv inhibitor variable u.

Previous work on ivave selection in excitable media through asymptotic expansions [3, 7, 8, 9, 12] has focused entirely
on leading order in the small parameter e and primarily on two climensions. Expanding the rotation frequency as

., -u(o) +ecr(1) +..., (3)

only the leading-order frequencyr.r(0) has been obtained[3, 7] . While the small-e (Fife) limit has played an important
role in 2D studies, the leading order does not accurately predict many properties of waves at finite e . However, we

find (Fig.3 beiow) that expansions to first order in e are predictive well into regimes of physical interest.

2. Geornetly. asymptotic description and leading order solution

For the leacling-orcler asyrnptotics, rve begin by considering the general three-dimensional (3D) case. The medium
is divided into three regions: outer, interface, and core as sholvn iri Frg. 2. The filament is the curve X(s, l) inside
the core. The outer region comprises the bull< of the medium. It consists of both excited (*) and quiescent (-)
portionsforrvhichu=u*=landLt,='tL-=0,respectively,toallordersine.Expansionoftheu-fieldintheouter
regiongives: u=u'*e.r(l) +..., where us =_b*a12is thestaliconcentration (valuesuch that aplaneinterface
is stationary) and u(t) is to be determinecl.
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Figure 1: Twisted scroll wave from nu-

merical solutions of Eqs. (1-2). Isosur-

face is shown for u = 0.5. The filament is

white. The structure rotates in time with

frequency u,, about the filament' The

trvist is i = 0.5, (defined later in the

text); e = 0.1.

Figure 2: Scroll geometry showing outer regiohs [excited

i+") ."a quiescenl (-)], interface regions [wavefront (*)
),râ *uu"Uu.k (-)], urrà .o.. region' The filament X(s'l)
is parameterized by s and time l' Local coordinates to

thË filament are (r,9,s), with (r,rp) in the plane normai

to X(s,l) and rp measured from the normal vector n'

separating excited ancl quiescent states are the thin interfaces where u undergoes rapid change' These consist of

a lvave front (*) and a rvave back (-), which on the outer scale are given by I = ot(r,s,l)' solving leading- and

first-order inner equations for u across the interface (o is constant at these orders across the interface) and matching

to the outer u-solutio', one obtains equations for inierface -"ti"'ti0i'-ih"t eq'^(1-2) reduce to equations fot u(1)

in the outer region together with equations for the motion of the twointerfaces (free boundaries):

,$iolt6+ q uL t_ fi ,,r,.)*-: ,/ mX (t

where ô(0)* is the leading order approximation to ôt, and where ht = lôxlôsl(1 - r1{coso(0)t), r{ is the

filament curvature, m+ is the determinant of the metric tensor and 1/+ is tire mean curvature of interface O(')t'

and finally s(r)+ i. th. ào. of,r.,(1) at i.rt..r*.-otoË. Eq (5) equates normarverocity of the interface to twice the

mea, curvature plus the speed of a plane interface. Phenoménoiogical approaches to excitable media yield similar

equations [16]. As in 2D [9], the core plays no role ât Ieading orcler other than to regularize the cusp that would

otherl'ise exist a,s the two interfaces come together. However, leading-order core equations dictate that X(0) - 0'

i.e. tire filament velocity is zero at leading ord"er in e anci fllament motion must come at higher order'

we now consicler the specific case of a straight filament and seek solutions with uniform twist r = âÔ/ôs and

constant frequency riô'il-'ôrol . rn. angleîetweer the two interfaces can be shown to be constant: ÀÔ(0) -
q(o)- - O(0)+ - 2r(l-r,1 orra ,ir)* .un bî eliminatecl from the free-boundary equations to obtain a single equation

ciescribing the shape of the interface[l0]:

dur(o)
o-- .- -f'dr = i(g * E(o)2; - B(,1+ r1r(o)2;a/:,

(4)

(5)

(6)

rvirere ÿ(0) =r4q0)+14r=rclil$)-fctr,and's=1,t72';2,with i-'/ut9)r'i=rlJu6' TheeigenvalueBis

.elated to o(0) ancl moclel parameters uiu s ='(l.rlrttill'l' where 1fl2 - tfiru'(r - u.')la' with i = 0 (2D case)'

Eq (6) is as given by Karma[], whiie f:, i'10'it'.u'be shown to ug'"" with thà'work'of Bernoff [3]' Viol and the

selected B as a function of i2 is found[I1] fiom Eq. (6) by shooti"gii"ttg'uting from f = 0 to large i and finding

ï'.".f, ,fr., ÿ(0) matches the relevant large-r iimit obtained from Eq (6)

E(o)111V(o)2)
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3. Order-e asymptotic for a straight filament with twist

\\'e norv consider the order-e asymptotics. We treat only the case of straight filaments. For sr:rolls witli trvist r
lotatirig at frequency u: ôl0t = -aôlô9 ard 0f 0z = rAlô9. For this case Eqs. (1-2) become

(7)

(8)

rvhere Vf = A2ldr2 +$lr)01ôr+(qlrz)d'?1092. The major compiication in deriving free-boundary equations from
Eqs. (7-8) is matching outer and inner solutions (for u and r,) across the interface because 'u(2) is not constant across

the interface and because the normal to the interface lies outside the (r, g) plane when r I 0. For this we use local
coordinates "normal" to V2, near the interfacef10] .

Tire symbolic calcuiator Maple is used to obtain the cascade of asymptotic equations in both the outer and inner
legions up to the order of interest. The outer asymptotic expansion is plugged into Eqs. (7-8). For the inner region,

Nlapie is first used to express Eqs. (7-8) in local inner coordinates in the interface region and then used to fiug the

inner asymptotic expansions into these equations. Maple is then used to find the behavior at infinity of the inner

solution and to perform the intricate asymptotic matching with the outer solution. Finally, NIaple is used to find the

asymptotic behavior at infinity of ÿ(0) and t[(1) to many orders in i. The symbolic calculator a]lows us to quickly
derive these results and to minimise the possibility of mistakes in such fastidious calculus.

The result is that at this order Àô(l) - ç,(t)- - O(1)+ = 0 and it is again possible to obtain a single equation for
E(t) - or(o)r4q(l)+ ld.rlll) with an eigenvalue D related too;(1) by D - ar(1). The general solution of this equation
is found[11] and diverge exponentially at infinity unless D has aselected value.

Finally, we use s"v-mbolic calculation to verify that the fields obtained asymptotrcally is truly the solution of trqs. (7-8)

Lrp to the order of interest. This is an exact check n'hich is independent of the calculus used to derived the asymptotic

flelds. We perform this verificarion with t\Iaple by (i) plugging into Eqs. (7-8) the outer asymptotic solution and

equations for ÿ(0) and ÿ(1) up to the relevant order, then expanding in e and verifying that 0 = 0 on the computer;
(ii) doing the same for the inner asymptotic solution and rvith Eqs. (7-8) written in the local stretched coordinates

(but not expanded in e) ; (iii) checking the matching betrveen the outer and inner asymptotic solutions. Such a

check is important in boundary layer problems. The symbolic calculator makes this check easy to perform and thus

provides a strong and usefui tool for singular perturbation calculus,

4. Cornparison with the nurrrerical PDE solution and conclusion

We now compare the asymptotic results wiih full PDE solutions. For this we solve (7-8) using Newton's method [2].

The operator V] is discretizecl on a polar grid typically with 256 points in g and radial spacing Ar - 0.05. The

r-derivatives are computed by finite differences and g-derivatives are computed spectrally.

Figure 3 shows the dependence of u on e from the PDE solutions. This figure clearly shows the existence of the Fife

limit: a finite-frequency limit as 6 -+ 0. Over a substantia,l range of e, the frequency is very well captured by the

firsttwoordersine: or-o(0) *ec,;(l).Extrapolationoffrequencl,datatoe=0givesu(0) andthusB.Theslopeof
o versus e gives cu(1) ancl hence D. Prom the computed'u-fielcls lve find the functions (D* as curves on lvhich u: l12

ancl from these \[ is computed by differencing. Anaiogousiy to the frequency, from the dependence of ÿ on e rve find

ÿ(0) anci ÿ(1)[11] . The core radius is found to be r - 8e and the data also confirm that ÀÔ(I) = 0.

In Fig. 4 rve compare full solution of the stationary PDE (i-8) with the interface curves. Shorvn is a cross-section

of a trvisted scroll wave normal to the stlaight filament X at station s atrd instant I in the domain, r ( 20. AIso

showl is cross-sectiol of the stationary interface at leacling-orcler p -- 6(o)*(r, s,l) and at Ieading-plus-fir'st-order

g:6(0)+(r.s,l)*€O(1)+(r,s,l). Figuresa(b) and(d) showthesamecaseasFig. l(aparifiomtl-redomainradius).
The agreernent is excellent and contains no acljustable parameters.

In conclusion, we have derived free-boundary equations at leacling-ordel and first-order for twisted scroli rvaves in

excitable meclia and we have validated these equations directly rvith numerical solutions of the underlying PDEs.

The free-bounclary equations we have derived apply to a large r:lass of rnoclels [10] . Por excitable ntedia it rvould

§e of 6onsiderable interest to derive an equation of motion for this filament as has been successlully performed in

hydroclynamics for vortex filerments[4] .
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Figure 3: Scroll frequency c, versus

e from numerical solutious of the PDE
model for two values of tlvist. Lines are

frorn fits to the data at small 6 and are in-
distiuguishable from asymptotic predic-

tions at first order in e.

Figure 4: Comparison between PDE solutions (greyscale)

and asymptotic results (whiie curves) . (a) i = 0, asymp-

totics at leading order. (b) i = 0.5, asymptotics at leading

order. (c) v = 0, asymptotics at leading-plus-first order'

(d) i = 0.5 , as;'mptotics at leading-plus-flrst order. Black

is the interface 0.1 ( u ( 0.9; light grey (dark grev) is

u < 0.1 (u > 0.9). The radius is 20; o = 0.8, Ô = 0.1,

e = 0.1.
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