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A comparison between the equation of motion of the central line of a slender vortex filament deduced
from a matched asymptotic expansion[1] and the expansion of the equation of motion of the ad-hoc cut-off
methods[2] with the cut-off length as the small asymptotic parameter is performed. It justifies the cut-off
methods and gives the link between the cut-off lengths and the thickness of a viscous or inviscid vortex with
an axial velocity component. The asymptotic equation of motion for an open filament is then simplified in
case of a perturbed straight filament and different regimes are displayed. They depend of relatives values
of the amplitude of the perturbation and the small thickness of the filament.

1 Introduction

It is well known that the structure of flows often exhibits concentration of vorticity in the form of vortex
sheets or of vortex filaments. They can be seen in aircraft wakes, jets, boundary layer, Direct Numerical
Simulations of turbulent flows, tornados,...

There are a considerable number of publications about the motion of a vortex filament and its stability.
All field of methods have been used : formal asymptotic and linear stability analyses, direct numerical
simulations, experimental investigations,...Theoretical studies have been performed either with Navier Stokes
equations or simplified ones. In the later case, the field that covers the result of the study or its validity
depends of the field of validity of the simplified equation that is used. This domain of validity needs to be
given.

Here, a general dimensionless description of a slender vortex filament is given as an introduction to all
discussion. A number of ad-hoc equation of motion due to ad-hoc regularization of the singular line Biot-
Savart integral are given and compared with the results of a systematic matched asymptotic expansions. It
is performed both for a closed vortex filament and an open one. Our first main result is to give a relation
which makes a link between ad-hoc and ”exact” asymptotic approaches. The asymptotic equation of motion
for an open filament is then simplified in case of a perturbed straight filament and different regimes are
displayed. They depend of respective values of the amplitude of the perturbation and the small thickness
of the filament. This is our second main result, that is sum up on a diagram showing the domain of validity
of the various simplified equations.

2 Description of a vortex filament

A slender vortex filament of thickness δ is a solenoidal field of vorticity ω(x, t) which is non-zero only in the
neighbourhood of a three-dimensional curve C, called the central line. This curve is described parametrically
(Fig.1) with the use of a function X = X(s, t), which denotes a point on the curve as a function of the
parameter s and time t. Either s ∈ [−π, π[ for a vortex ring that has a closed central curve, or s ∈ [−∞,∞[
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Figure 1: The central curve and the local co-ordinates of the vortex filament.

for an open central line. The local torsion of C is called T and K is the local curvature. The function σ is
defined by

σ(s, t) = |∂X/∂s| (1)

where | | is the usual norm of R3. For each point on the curve C, there is the Frenet frame (t,n,b) with
respectively the tangent, normal and binormal vectors. The strength Γ of the filament is the flux of vorticity,
that is the same in each section of the filament. For a vortex ring, S is the length of C. The vortex filament
may have an axial flux of strength m.

The thickness δ of the filament is of order l and the other length scales, for example : the radius of curvature,
the ring length,... are of the same order L. Here l/L � 1 as the vortex is slender. The parameter ε is
defined by ε = l/L. Here, in fact, the exact value of l and L are not needed.

The Reynolds number Re is defined as Re = Γ0/ν where ν is the kinematic viscosity of the fluid and Γ0

the initial circulation of the filament. The number α is defined such that R−1/2
e = αε. Thus, the inviscid

case is obtained when α = 0 . Both inviscid α = 0 and viscous α = O(1) vortex filaments are studied.
The Swirl number Sw is defined as S−1

w = m∗0 = m0/(Γl), where m0 is the initial axial flux of the filament.
Dimensionless variables :

X∗ = X/L S∗ = S/L
K∗ = LK T ∗ = LT
δ∗ = δ/L t∗ = t/(L2/Γ)
v∗ = v/(Γ/L) ω∗ = ω/(Γ/L2)

are introduced. From here on, all quantities are dimensionless and the asterisks are omitted. All dimen-
sionless variable X, ω, v,... have expansion in ε. The velocity is of order ε−1, which is called leading order,
then there is first order and so on.

3 Equations of motion

Two methods can be used to avoid the logarithmic singularity that appears in the velocity of a vortex
filament without thickness : either a cut-off method [2], but it introduces an unknown length of cut off, or
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a matched asymptotic expansion of a slender vortex [1]. These both methods are described in the following
and then compared.

3.1 Cut-off methods

The equation of motion of the central line C of a slender non-circular vortex ring was first expressed by
different ad hoc methods. First there is Burger’s method[2]

Ẋ(s, t) =
1

4π

∫
I

σ′
t(s′, t)× (X(s, t)−X(s′, t))
|X(s, t)−X(s′, t)|3

ds′ (2)

where Ẋ = ∂X/∂t, σ′ = σ(s′, t) and I = [0, 2π[\[s − sc, s + sc[. The unknown small variable sc is a
small parameter introduced to avoid the singularity. This ad hoc method was called the ’cut-off method’
by Crow[2], name that can be generalised to all methods that introduce a small ad hoc parameter sc to
avoid the singularity in the integral. In this way, the slenderness of the vortex is taken into account. The
parameter sc is called the cut-off length. In a similar way,

Ẋ(s, t) =
1

4π

2π∫
0

σ′
t(s′, t)× (X(s, t)−X(s′, t))[
(X(s, t)−X(s′, t))2 + s2

c

]3/2 ds′ (3)

can be used[8, 17, 16, 15, 18]. Finally, one often write[7] :

Ẋ(s, t) =
1

4π

2π∫
0

σ′
t(s′, t)×M′M∣∣M′M

∣∣3 f(

∣∣M′M
∣∣

sc
)ds′ (4)

M′M = X(s, t)−X(s′, t) (5)

with f(χ)→ 1 when χ→∞ . For example :

f(χ2) =
−2χ2 +

√
πerf(χ2)eχ

4

√
πeχ4 (6)

in Leonard vortex element method (VEM) [7], where erf is the error function.

The Burger’s method of a non closed vortex filament is :

∂X/∂t =
1

4π

∫
I

[
t(s′, t)× (X(s, t)−X(s′, t))
|X(s, t)−X(s′, t)|3

]
ds′ (7)

with I = [−∞,+∞[\[s− sc, s+ sc[

These methods can all be written in the common form

Ẋ(s, t) = Q̃(X(s, t), sc), (8)

where sc is an ad-hoc regularization parameter that has not been specified. Let us point out that here these
ad-hoc regularization procedures have not been justified.
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3.2 Asymptotic equations of motion

The equation of motion of a non-circular slender vortex ring has been also derived from Euler or Navier-
Stokes equations using a matched asymptotic expansion with the core thickness as a small parameter in
different papers [1, 15, 19, 4]. The very efficient and accurate paper on this subject is the one of Callegari
and Ting[1]. These authors [1] obtained the following equation for the motion of the central line :

Ẋ(s, t) = Q +
K(s, t)

4π
[− ln ε+ ln(S)− 1+Cv(t) + Cw(t)] b(s, t), (9)

with :

Q = A(s, t)− [A(s, t) · t(s, t)] t(s, t) (10)

A(s, t) =
1

4π

+π∫
−π

σ′

[
t(s+ s′, t)× (X(s, t)−X(s+ s′, t))

|X(s, t)−X(s+ s′, t)|3
− K(s, t)b(s, t)

2 |λ(s, s′, t)|

]
ds′ (11)

σ′ = σ(s+ s′, t) (12)

λ(s, s′, t) =

s+s′∫
s

σ(s∗, t)ds∗. (13)

In this expression (9), Cv(t) and Cw(t) are known functions, provided the initial vorticity field is specified.
This expression (9) hold for a vortex ring with axisymmetric structure at leading order and no axial variation
at this order. Quick waves that evolve on a time t/ε2 and short wavelengths are also neglected. For such a
vortex ring, the typical short length scale l is chosen to be the initial thickness δ0. Here, only the leading
order of the equation of motion is given. A first order is given in [15, 4, 14].

A special and interesting case is the similar vortex ring[1] for which :

Cv(t) = [1 + γ − ln 2] /2− ln(δ̄) (14)
Cw(t) = −2(S0/S)4(m0/δ̄)2 (15)

δ̄(t) = (S0/S)1/2

1 + 4α2

t∫
0

S(t′)/S0 dt
′

1/2

(16)

where δ̄ = δ/ε and γ is the Euler number.

Figure 2: A perspective view of the numerical simulation of mode n = 3 (from left to right)

A Fortran code was written to simulate numerically the equation (9) of motion of a vortex ring. An implicit
finite difference scheme is used and the Simpson’s rule is employed to integrate Q. The equation of motion
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is written in a dimensionless form. The different stages of the evolution of a perturbed circular vortex
ring of initial shape in a plane are found. The typical length scale L is chosen to be the initial radius
R0. The second inviscid mode was investigated by Liu, Tavantziz and Ting[9]. Here, figure 2 shows the
motion of a third inviscid mode with parameters ε = 0.02 and m0 = 0. A linear stability study gives [13]
an analytical formula for the period of oscillations as a function of the mode n of the perturbation. There
is good agreement between this formula and the value of periods found with numerical simulations.

For a non closed vortex filament[13], the asymptotic equation of motion is :

∂X/∂t = Q +
K

4π

([
ln

2
ε
− 1
]

+ Cv(t) + Cw(t)
)

b (17)

with A(s, t) that is now given by :

A(s, t) =
1

4π

+∞∫
−∞

[
t(s+ s′, t)× (X(s, t)−X(s+ s′, t))

|X(s, t)−X(s+ s′, t)|3
−H(1− |s′|)K(s, t)b(s, t)

2 |s′|

]
ds′ (18)

where H is the Heaviside function.

3.3 Comparison and justification of cut-off methods

All cut-off methods introduce a cut-off length sc, that is an unknown parameter that must be specified. The
easy choice that is often done is to take it equal to the thickness ε

sc = ε. (19)

It is interesting to notice that cut-off integrals (2-4) are singular for the small parameter that is the cut-off
length sc. Thus, these integrals can be expanded in sc with the matched asymptotic expansion of singular
integrals method[3, 13, 12] and the first order of this expansion can be compared with the first order
asymptotic expansion in ε of the equation of motion (9). This gives the link between the cut-off lengths
and the thickness of a viscous or inviscid vortex with an axial velocity component. It appears[11] that, at
principal order, the cut-off methods are equivalent to this asymptotic equation of motion of the central curve
provided that the following link between sc and ε is chosen :

sc(s, t) = ε
1

σ(s, t)
eN−Cv(t)−Cw(t). (20)

The values of N depend on the cut-off method that is used and are given in table 1.

Name of the cut-off method N
Burger (2)(7) 1− ln 2
Rosenhead (3) 0
VEM (4) 1− 0.009122− ln 2

Table 1: The parameter N as a function of cut-off methods

With the use of the exact link (20) between sc and ε , cut-off methods are then generalised to a viscous
vortex if α 6= 0 and the axial velocity is taken into account through Cw . As cut-off methods are equivalent
to the asymptotic derivation from Navier-Stokes equations, they have the same field of validity and so do
not take into account short waves.
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4 The different regimes of a perturbed straight filament

In dimensionless form, a perturbed straight filament is

X(x, t, d) = xt0 + dX(2)(x, t) + o(d), (21)

where d is the small amplitude of the perturbation and xt0 is the straight filament. If L is the characteristic

Figure 3: The straight vortex filament and its perturbation

length used to put the problem dimensionless and λ the wavelength of the perturbation, we have chosen
here L = O(λ) to describe the filament. On the contrary, the choice L = O(λ/d) of Klein and Majda [6] to
describe the same filament gives

X(a, t̄, d) = at0 + d2X(2)(x = a/d, t = t̄/d2) + o(d2). (22)

Here, the perturbation wavelength is denoted d and no ε as in Klein and Majda’s paper [6] because ε already
refers to thickness in the present work.

Figure 4: The filament of Klein and Majda

4.1 Simplified equation of motion

With the expression (21) (or its equivalent form (22)) of the central line, the equation of motion (17)
simplifies [13, 10] in

∂X
∂t

(x, t) =
∂X(2)

∂t
(x, t) =

1
α̃

(Kb)(dx, t) − (t0 × J(x, t) +O(d)) (23)

with

J(x, t) =
1

4π

+∞∫
−∞

(X(2)(x+ h, t)−X(2)(x, t))− h∂X
(2)

∂x (x+ h, t)

|h|3
+H(1− |h|)

∂X(2)

∂x∂x (x, t)
2 |h|

 dh (24)
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α̃ = 4π/(
[
ln

2d
ε
− 1
]

+ Cv + Cw) (25)

(Kb)(dx, t) = t0 ×X(2)
xx (x, t) +O(d) (26)

and t̄ = t/d2.

Hasimoto[5] introduced the following complex function ψ

ψ = K exp(i

x∫
0

Tds), (27)

called Hasimoto’s transform, where K, T and x are respectively the local curvature, torsion and abscise on
the filament X(x, t). If the transformation (27) is applied to (23), this equation becomes [6, 10]

1
i
ψτ = ψxx + d2(

1
2
|ψ|2 ψ)− α̃(J(ψ) +O(d)) (28)

where τ = t/α̃, t̄ = t/d2 and

J(ψ) =
1

4π

+∞∫
−∞

[
(ψ(x+ h, t)− ψ(x, t))− h∂ψ∂x (x+ h, t)

|h|3
+H(1− |h|)

∂ψ
∂x∂x (x, t)

2 |h|

]
dh. (29)

4.2 Various degeneration of the equation of the filament function ψ

The equation of motion (28) simplifies in different ways that depend on the order between the small thickness
ε of the core (that appears in the expression of α̃) and the small amplitude d of the perturbation. The first
interesting degeneration of the equation (28) is obtained when α̃� d2. The equation (28) becomes linear :

1
i
ψτ = ψxx − α̃J(ψ) if α̃� d2. (30)

The non linear term d2 1
2 |ψ|

2
ψ has disappeared as it is of the same order than terms that were neglected

so that the nonlocal term A(s, t, d) becomes −J(ψ) at order 1. The second interesting degeneration of the
equation (28) is obtained when α̃ = O(d2). The equation (28) becomes :

1
i
ψτ = ψxx + d2(

1
2
|ψ|2 ψ − κJ(ψ)) if α̃ = O(d2) (31)

with κ = α̃/d2 = O(1). When κ = 1, this equation was first obtained by Klein and Majda[6]. Here, the
local term that is in the equation of Callegari and Ting introduces a nonlinearity at the same order than
the nonlocal term that becomes linear.

The third interesting degeneration of the equation (28) is obtained when α̃ � d2. The equation (28) then
becomes :

1
i
ψτ = ψxx + d2(

1
2
|ψ|2 ψ) if α̃� d2. (32)

This is the local induction approximation for which the nonlocal integral term is negligible as regard as the
local nonlinearity.

On figure 5, the various simplifications of the equation of Callegari and Ting are given according to the
amplitude d2 of the filament (21) of Klein and Majda and its thickness ε. On this figure, ds is the value of
the amplitude of the disturbance from which one cannot neglect any more the first nonlinear correction in
the asymptotic expansion with d of the nonlocal term.

It appears three zones of simplification :
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Linear Regime

Ultra thin filament

filament
Thin

Local Induction Regime

Klein and Majda  Regime

Full Callegari and Ting’s  Equation

and

d =
√
α̃/ds

1
i
ψτ = ψxx − α̃J(ψ)

d

ds

ds

1
i
ψτ = ψxx + d2(1

2
|ψ|2 ψ − κJ(ψ))

α̃ = O(d2)

1
i
ψτ = ψxx + d2 1

2
|ψ|2 ψ

α̃

α̃� d2

α̃� d2

κ = α̃/d2 = O(1)

Figure 5: The different simplified equations of a perturbed straight filament
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• the zone of local induction : d >
√
α̃/ds

• the zone of the regime of Klein and Majda : d =
√
α̃/ds and d < ds

• the linear zone : d <
√
α̃/ds and d < ds

The complementary zone to these three ones is the zone of the complete equation of Callegari and Ting for
which one can not neglect the nonlinearity of the nonlocal term A(s, t, d). In these three zones, one can
replace the equation of Callegari and Ting by the equation (28) and according to the zone, the equation is
still simplified in one of the equations (30, 31, 32).

When the amplitude d2 increases, with α̃ fixed and α̃� 1, one goes gradually from the linear regime to the
regime of Klein and Majda, and then to the regime of the local induction. The linearization of the regime
of Klein and Majda is not the linear regime. The regime of Klein and Majda is valid only for d = O(

√
α̃)

and not for d �
√
α̃ or d �

√
α̃. When the amplitude d2 increases, with α̃ fixed and α̃ = O(1), one goes

gradually from the linear regime to the complete nonlinear regime. The regime of Klein and Majda is then
never applicable when α̃ = O(1).

5 Conclusion

A number of ad-hoc regularisation of the singular line Biot-Savart integral are scrutinised and compared
with the results of a systematic matched asymptotic expansion of the Navier-Stokes equations. It was
shown that each of these ad-hoc methods can be made to agree with the more fundamental theory by an
appropriate choice of the relevant regularisation parameter, called the cut-off length. It was performed both
for a vortex ring and an open vortex filament.

The equation of motion of a perturbed straight filament has been derived from the asymptotic equation of
motion of an open filament. The different simplified regimes of this equation are then discussed according
to both the amplitude of the perturbation and the thickness of the filament. The domains of validity of
the Local Induction Approximation, the Klein and Majda regime and the lineralised Callegari and Ting
equation have been then displayed on a same diagram.
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