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THE COMPLETE FIRST ORDER EXPANSION OF A SLENDER VORTEX
RING

D. MARGERIT
LEMTA, CNRS URA 875, Nancy, France

Abstract. Equations for the axisymmetric part of the velocity field and for the equation
of motion of a non circular slender vortex ring are given at fust order. This is the
correction to the known leading order given by Callegari and Ting [2].

1. Definitions and Notations

The length scales of the vortex ring that are different from its thickness â , for
example : the radius of curvature, the ring length, are of the same order Z with
6lL=O(e) <<1. The central curve is described paramekicaly with the use of a

function *=*(r, l). A local curvilinear co-ordinate system (r,e,s), with a frame

(i,6,t), is introduced near this central curve [2]. There is an outer problem defnedby
the outer limit : e -+ 0 with r fixed, which describes the situation far from the central

line and an inner problem definedby the inner limit : e -+ 0 with i = rle fixed, which
describes the situation near the cenhal line.
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Figure I : The central curve and the local co-ordinates ofthe vortex ring.
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The change between cartesian co-ordinates M(x1,x2,x3) and local co-ordinates

M(r,ça,s) satisfies :

i = oil = i(s,r) + ri(rp,s,t)

We have :

r-l
o(s,r)=lx,l X, =oi i,=oKi
ü, =o(7i-«î) 6"=-o7î
i =î(rp.s)= fr(s)"otP+61r;.i,P

6 = 61p, s1 = -fr(s) sin I + Ë1t) tos P

where | | is the usual norm of R3 , f the local torsion of 0 and K the local curttature of

l. Notice that here and throughout this paper, the differentiation ôf lôx of a function/

with respect to its variable x is denoted Â ; x is the cross-product and o is the dot-

product.

The smallparameter e is definedby e = 6olL=6(t = 0)/L ' Dimensionless variables:

r* =rlt *- =*,t t o* =olL K* = LK

T*=LT S*=S/L 6*=ôlL
t. =tf Q2 tD i. =rlir t L) 6. =al([ t L2)

are introduced, where s is the length of the ring and I is his circulation. Here, î and

ô are respectively the velocity and the vorticity frelds. From here on, all quantities are

dimensionless and the asterisks are omitted.

The Reynolds number R" is defined bÿ R' = r / v where v is the kinematic viscosity

of the fluid. Let us define the number a such that R"ttz = ae ' Both inviscid : a = 0

and viscous : a -- O(L) vortex rings are studied'

The velocity is decomposed as follows :

where

i(r,ç,s,t, e)= *(r, r, 
") 

* ÿ Q,ç,s,t, e)

ÿ = ui +tÂ +vvi
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2. Limit of ÿinn at i -+ oo up to Order a through Biot and Savart Law :

Let us have a vorticity field of the form :

a =14(o)(i,p,,)
€'

The Biot and Savart law is given on local co-ordinates by the formula :

7 (r,ç,s,t,e)

_ r ,rr 
12ôri',p',"',r,e) , [(*(",r,") +, r(p,",r,e)) - (*("',r,") + a i' r')l 

nl,i, ar, aq, a,
4tr"' I - -' 'lJ r

l{x{r,r,a)+'r{p,s,r,a))-(X(s,t,e)+ e r î )l

where n3 = o(s ,r) (l - K(! ,t)ei cos(p')) .

Next, in this section, s will be an arc length parameter.

The outer expansion ofvelocity is :

iout (r, cp, s, e\= ; out(o) 
Q, rp, s) + e iot'o) (r, r, r) + o(ez ) .

JJta -ta .ili );d;da = o

4'1

(6)

(7)

If
one obtains :

- out(O) ,v \r,(p,s,e) =
i(s )x(i-X(si"t

o

»"ds

(8)

(ea)

(eb)

I - rl3
l(l - x(s )l

(1)

(2)

1 â*.
and ÿ;.="â (3)

The following forms are chosen for the inner expansions of the velocity {ield :

,inn = ,o 1i,q,t,t1+"'

,inn _u_lr(o)(i,s,r) + r(t)9,ç,s,t)+...

,,inn _ r_lr(o)(i,s,r)+ *0 1i,q,s,t)+...
with an expression of the central curve of the form :

i = rt(o) 1s, r) * , rt(l) 1s, r)+...

with:
Thus at leading order in outer co-ordinates, the velociÿ field exactly correspond to the

Dirac delta distribution 6gi on the central line.

Incase ô@ =rrl)6*r31r;i, when , = " 
i isput in io't1r-+ 0,p,s), oneobtains:

ÿinn(; --) @,g,s) =1ç,,{o)1, -+ æ,p,s) +,n -lnn(ol)1i -+ a:,p,s)+-in'(l)(i -+ æ,rp,s) 
(10)

..4rr1inn(12)11 + æ,p,s) + 
" 

-inn(2)1i --r æ,p,s) + o(e2 lne)

(4) l

r,i

'it

:\.(5) n

r
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- inn(o) 
1i -+ æ, ça,s) = *i. I. ^Ï,

-i..(01).- * 
Ëv""' (r --+û,Q,s)= -io
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Through matching, they found the following equation for *(0) 1s, 11 :

. (0) . (o) u@) f c(o) I
x -(x .r)i=(-lln' -tl+r(0)c.16+À-(Â.i)i (13a)'4rl c )

where

- rnn(r)1i -+ æ,ç,s) = #l"i -,]o. f *.æ * ; *2 * ot!)
-inn(12)1i --» æ,rp,s)= il +isi

(1 1a)

(1 lb)

(llc)

(r ld)

(l le)

(110

,t: *(,*'!4ÿ(o))2 
d€-r,(;)) - r*i«*,',t' oej

.rlrc (t)=G|*r*
t

r+t
).(s,i,t)= Io,o,

A(s,l)

(l3b)

(13c)- n' (2) 
1i -+ æ, rp, s)= 1i3 + i, iy rn i + (iu +i,, 1e,s1)i +ia + É 1 1r1

- | ,-
E z(ç, r) = ç(ÉO, A- rÔ1e, s1)

whereexpressionsof Â, B, Ô, Èr, i, (i:1...6)aregiveninAppendix.

This expression (10) can be compared with that of Fukumoto and Miyazaki [4] (page

373) and Callegari et Ting 12) (page 173). It is the same all but here À , É , Ô and

order e are given. Besides here the derivation was performed in an algorithmic way

with formal calculus (Maple) and with the matched asymptotic expansion of singular

integral method following François [3] or Bender and Orszag Il]'
Let us notice that the same result would have be obtained if i + .o were put in the

inner expansion ofBiot and Savart law [6].
This result will be used in the following when the asymptotic matching will be

performed.

3. Results at Order 0

Callegari and Ting [2] considered the case *he." ,(0),r(0) u.. independent of s so

that some compatibiliÿ conditions are satisfied. They deduced the following equations

1o, ,(0), r(0) from Navier Stokes second order equations :

- dr\2(,;,ù 
- oz âr(o)\l,t) *a2 u<otç,t)- oz- 

az u(o)li,t) -!;a *!\',tl* 
= ,

ôt âr , ai" z or J

(r2a)

-ô*(o)(i,t) -2 a*\o)(r,t) --r'd'*(o)(i,,) -!;a r*@){r,t), ;'-=0 (l2b)
ât âr âr

where .s(0) is the length of the ring.

(s*, r)ry's*

We write :

(t4a)

(l4b)

(1ac)

(13d)

4. Results at Order 1

In the same way that first order Navier Stokes equations give compatibiliÿ equations

1o. ,(0),r(0), second order Navier Stokes equations give compatibility equations for

the axisymmetric part v"(t),rar"(l) og,(l),r(l). These equations are automatically

satisfied if v"(l) i. assumed to be independent ofs and if wr(l) is such that :

a*!t)O,s,t) '(o)" "" 
);'""' = -" + a(s'r16(o)

a(s,t)=;'(o),rtol
w[t) 1i,s,t1 = wl} (s,r) + *[t) 1i,t1

Equations for v"(l),r"(l) can be extracted from third order Navier Stokes equations.

We did this with the use of symbolic calculus (on maple) in the following way : we
obtained third order Navier Stokes equations, then we carried out the p -average and s-

average of the axial and circumferential components of the third order momentum

equations using the third order continuity equation to eliminate u"Q) . Lot" of terms

vanished and we found equations fo, ,r(l),r"('). Not" that Fukumoto and Miyazaki

([4] page 378) postulated v"(l) =0, kept ,"(l) dependent of s, and did not have

equation for w"(l) . The following equations are obtained :
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j i'o'1;,,,;- = t[t"- r,,, *Jn',
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(15b)

(l5c)

or(+-"'[1«;1'rv,] )-
(14d)

( 14e)

ana ,!r)1i,r1 than for

wj'l1i,oy = o, the risht

ë, = ,*1h,,or 16,t1u,llr) {€,t)a6
0

- (;
,, = o _Li, I i+(o)rr, qu"ll\ql,4aq - +{P"rlr -+ *\o

a,l? = zfi*?*(y!€,ù(i(')r",,1.ur0r1,,,1) _ uff-*.et:st (r5d)

2r
where 5(l) = lo{Da

0

*'o'Ia'1" - ''t-(àl

.2ft

* l[,nt{l * c - qr*Q') [sto)À,1s,r;'É(o)d§- fo(o)Â(',t;' i(o)ds
4r| e' ''o o

| 
! "*, ^l!J',' 

t, 
- *'i,,r.,p (s, r )as

The left hand side of these equations are the same for '!l) 1i' r;

,to)1i,r) urd ,(0)1i,t) . We may notice that even if initially

hand side terms will induce w!l) 1i'01 * o when t * 0 '

These equation, fo, 'r(l),'.(') 
ut" linked to 1(r)1s'r)' so an equation for *(l) is

neededtohaveaclosedsystemofequationsforthefirstordersolutions 
v"(l),'"(t) u"6

*(l). Th. best attempt to find this equation is by Fukumoto and Miyazaki ([4] page

3g2), where contribution fromNavier stokes equations up to order al have been found

inordertoperformedtt"ury*ptotitmatching'Wemaynotethatintheirexpression

the term due to first order curvature K(l) is missing' Moreover' their expression for

*(l) i. not complete, as local and non-local (named Ô i" t+l) contribution from Biot

and Savart integral are given only up to order 
"0 

i' Fok r*oto and Miyazaki ([4] page

373) and Callegari and Ting ([2] page 173), while order al is obviously needed to

obtain complete and correct equation fot *0) ' The complete expression' up to â

order,wasperformedinsection2.Thematchingisthendoneandlackingtermsin

equation of *(l) are found :

k"' -,*"'. -,- = 
{ôr- I *t" 1',,) * } «(') ts,r) ln e -

r,;r,,,,,].) -i3"'r[Ë),= l,*,0,,;',,[;' -,",Ë.,1

fir,lr*"*r.,f-r,"rlo
1É,, . ili.{L,. * rlLn, * | -,, r}r * t, -

il
li
§
itl

l,l

.rL

ir:

ii

§
1!.

§

as[2,t=zqç{o)1,,,r4#O,(o)14,1;r(r)1s,r).rfr*,)4#)[i'o'1,,,,.a,0,G,,))

+ 6Kt0) 1s, 1;y[ 
I ) 

1 e, O - ze lf y0) 6, 11 + zE w(o) 16, 
y;5(0) 

1s, r; r(0) 1s, ry

- t5ro)15,r)rjr)1q,r1 âr(o)11,t1 
^ 4r(0)1s.r;wlr)1 E,r1 â*to)1E.t\-'--]ùGJ, ü *'- uto)cg dE

(lse)

- " 
ÉKtt) (r, t )*@ (1, t \ a t(o\ (4,,) 

^ 4çto) 1s. 11w(0 \ 6, q a *ft ) g, r 1-'---PG,t) dE *z va\4i - à4
This equation (15a) is the first order equation of motion of the central line. Fukumoto

and Miyazaki [ ] (page 373) had written this equation without f(l) , Èr and terms
with the axialfluxm. .

5. Conclusion :

A closed and complete system of equations (14d,14e,15a) for the first order

axisymmetric part ,"(l),r"(l) of the velociÿ field and for the first order central line:

i(l) of a slender non circular vortex ring has been given.
It would be interesting to find a simple case where a solution to these equations can be
found and to compare these equations with those of a circular vortex ring [5].

(15a)



In this appendix, terms that appears in formulas of section 2 are given.
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6. Appendix:

*:o tr2i2 ai = z,r [*to) ,ai
00

is =-

iu =-

D. MARGERIT

-mI' = -i,t
-lb = - Kmcostoi' zlT

i. =,lt{ x' - L- r' f - * (Kr sin s + 3 K 
" 

co*t)i - }@r "os 
o - :4 sin e)e]

,, = #{ ([- ].,"']"r.i,,r + 
[- 

r - f .,' r]", .o.r),

(l r 5 8 r 'l "r sl")l*([L-rt"tzl* 
ro - y *;.os2o)K'+ftntzl -i)r' 

1r1

1.,,,, = 
L[s'f x@ +à)t@ +à), $@ *â) - *@» * zr@ +i)
o" l-i,, l*1r*o1-ryol'

- "[r(o 
* o).(x(o *o) - *(r))J(6(n *o), (*(, *o) - x(r)))-,æ

,[t«, *â).(xtn *n) - i(o))](a(, *n), (i(o *à)- i(o)))

li1,*11 -*.1n13

( - t K(n)z r(,1') kt l

"f-,É,-TÉi- ffi}*, - fft*,-1ff0,"' d;]

*lr *, sin s - K r cos,plt * | r' sin(Ze)i + ] 12 cosfz oléf

, [,u, 
sins- Krcosoa)[t-tns]î.[,-Jtt]n z sin(zrp)r)

_t_tq"llq K2(s 3 \ I 
I

-" 
1.1Ë-;.[r -;nsJrz coslz,l)é 

]

i z (ç, o) = fi {e,1r, a - i qe, a1)

with:

- ([- :. tr] xr 
"o,,0 

+fe -] -.tr]",,* r)u

x2 (o)
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