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Abstract. Equations for the axisymmetric part of the velocity field and for the equation
of motion of a non circular slender vortex ring are given at first order. This is the
correction to the known leading order given by Callegari and Ting [2].

1. Definitions and Notations

The length scales of the vortex ring that are different from its thickness & , for
example : the radius of curvature, the ring length, are of the same order L with

8/L =0(¢) << 1. The central curve is described parametricaly with the use of a
function X = X(s,7). A local curvilinear co-ordinate system (r,@,s), with a frame

(F,é,’? ), is introduced near this central curve [2]. There is an outer problem defined by
the outer limit : £ — 0 with r fixed, which describes the situation far from the central

line and an inner problem defined by the inner limit : € — 0 with r =<r/ ¢ fixed, which
describes the situation near the central line.

xle] X,€,

Figure 1 : The central curve and the local co-ordinates of the vortex ring.
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The change between Cartesian co-ordinates M(x;,x,,x3) and local co-ordinates
M(r,p,s) satisfies :

. —
X = OM = X(s,t) + (@, s,1t)
We have :
o(s,t) =l5(s\ 5(5 =01 1, =0Kn
i, =o(Tb-Ki) by=-oTh
F=r(p,s)= 1(s) cos¢)+f)(s) sin @
) 9((p,s) = —n(s)sing + b(s) cos@
where ‘ I is the usual norm of R3 , T the local torsion of ¢ and K the local curvature of
. Notice that here and throughout this paper, the differentiation Of [x of a function f
with respect to its variable x is denoted f ; x is the cross-product and e is the dot-
product.
The small parameter ¢ is defined by £= 6 JL=8(=0)/L. Dimensionless variables :
*opll B =R1L ot 2efl K =IK
T"=LT $*=S/L &6 =6/L
=tf(} /Ty V' =¥/(T/L) & =a/(T/L%)
are introduced, where S is the length of the ring and I is his circulation. Here, Vand
@ are respectively the velocity and the vorticity fields. From here on, all quantities are

dimensionless and the asterisks are omitted.
The Reynolds number R, is defined by R, = I'/v where v is the kinematic viscosity

of the fluid. Let us define the number a such that R, V2 _ 4e . Both inviscid : @ = 0
and viscous : @ = O(1) vortex rings are studied.
The velocity is decomposed as follows :

v(r,p,s,t,6) = X(s t,6)+V(r,@,5,t,) 1)
where V = uf +v0 + Wi 2)
2 X
and b 3)
The following forms are chosen for the inner expansions of the velocity field :
u'™ = uD (7, 0,5,0)+...
yinn = e O G g )+ v (0, 5,0)+... (4)

wim = e 1@ 50+ w (r,0,5,0)+...
with an expression of the central curve of the form :
X=XO(s,0)+e XV (s,0)+... (5)
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2. Limit of ¥'™ at » —  up to Order ¢ through Biot and Savart Law :
Let us have a vorticity field of the form :

" 1 5
= 5 (0)
o= 82 @ (r,(p,s) (6)

The Biot and Savart law is given on local co-ordinates by the formula :
v (r,9,5,t,8)

1 82(;)(;‘,¢7.,S|,1,£) x [(X(s,t,£)+rF(qa,s,t,a))—()—((s',t,a)+g;l Fl)] S (D

IZ;M hyr dr a'(a ds

|(i((s,z,a) +ri@,5,1,8) = (R(s 1,6) + €7 f')|3

where hy =o(s 1) (1-K(s ,0)er cos())-
Next, in this section, s will be an arc length parameter.
The outer expansion of velocity is :

v out

+0) —outD
(r,0,5,6) =" (r,p,5)+ V" (r,¢7,s)+0(gz).

If _”(5 ~[& o7t Jrdrdp =0 (®)
one obtains :

_out(0 X
W g o ) _IT(S) G- X(s )) & %)
- %6
_out(1) 189 G- 1 (F‘X“—’(O)' 2 o i s
v (r,gp,s):;ﬂf———“—r K(s)coswdr dq)ds __m”—?,"’ dr dpds
- X(s y’ k=X
[ e g [Fee-x6)) o o
—;;HB i r dr dpds (9b)
'i—X(s )‘
with : % = X(s5,0) + (@, 5,1) -

Thus at leading order in outer co-ordinates, the velocity field exactly correspond to the
Dirac delta distribution ;7 on the central line.

(0

In case 3% = w, (1B +w;(r)7, when r =& r is putin ¥°*(r — 0,¢,5) , one obtains :
i 1_
V"(r > ©,0,5) = =¥ inn(© )(r — ©,0,5) + n &y )(r — 0,0,5) + yinn(! )(r — ©,0,5) (10)
ianl12
+ g )( — 0,0,5)+ € inn(2 )(r — ®,0,5) + O(e* In¢)



48 D. MARGERIT

with :

: 16 1

an(o)(r—-)oo ¢,s)______'__l__*_o(_) (11a)
2r
K -

an( )(r—>00(0,s)— b (11b)
Ar

~inm (1) ~ K S_ h f_ 3+ A !:2_ OL 11

v (r—> ©,0,s)= ”l:ln- 1}b+4”cos¢>9+ F = + (;2) (11¢)

VDG 0,0,5) =T + 157 ridy

vmn(><;eoo,¢,s>=<i3+i5;>m?+(i6+ﬁz<¢,s>)?+i4+F:x<s> (119

Ey(0,5) = (B(qp,s) 3C(0,s)) (119

where expressions of A,B,C.E i I,~ (i=1...6) are given in Appendix.

This expression (10) can be compared with that of Fukumoto and Miyazaki [4] (page
373) and Callegari et Ting [2] (page 173). It is the same all but here A, B, C and
order & are given. Besides here the derivation was performed in an algorithmic way
with formal calculus (Maple) and with the matched asymptotic expansion of singular
integral method following Frangois [3] or Bender and Orszag [1].

Let us notice that the same result would have be obtained if r — o were put in the
inner expansion of Biot and Savart law [6].

This result will be used in the following when the asymptotic matching will be
performed.

3. Results at Order 0

Callegari and Ting [2] considered the case where v(o),w(o) are independent of s so
that some compatibility conditions are satisfied. They deduced the following equations

for v( ) w9 from Navier Stokes second order equations :

«(0)
2 -
= 2 v(o)(r,t) 1 —5 rv(o)(r S

-é’v(o)(;,t) o ﬁv(o)(r t) a’ o _
P = = (rt)-a ") 2T o SO
ar
(12a)
NO) 4,07 £
1) ()P - g
—ow O 2 oW a0 WOy 1; @By S o (12b)
ot ar -2 2 r2 s©

ar
where §(is the length of the ring.
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Through matching, they found the following equation for x© (s,t) :

<0 (0 K© 5
X -(X -E)%=(4 In

—1}+K(°)c*)5+/i—(/i-%)% (13a)

where
C'(t) = é + ; + lim [4;:2 [dv @Y ag- ln(r)] —8x? j'g(w(")) & (13b)
r—w 0
o
A(s,5,1) = ja(o)(s*,t)ds* (13¢)

s
A(s,1)

+7T

1 I Mg 58 O +50x (XO(s +5,0) - XO 1) KO (s,1) b9 s, t)a(o)(s +5, 0,
“E KOs+ 5,0) - XO 5,0 < [

-

(13d)

4. Results at Order 1

In the same way that first order Navier Stokes equations give compatibility equations

© 1,

for v , second order Navier Stokes equations give compatibility equations for
the axisymmetric part vc(l),wc(l) of v, w These equations are automatically
satisfied if v,(") is assumed to be independent of s and if wc(l) is such that :

owDrs,y 2O

=-0c + a(s,z)a(o) (14a)
Js -
ONE
a(s,t)=S§ /8O (14b)
We write : wD (r,5,0) = Wl (5,0) + WD (7, 1) (14c¢)

Equations for vc(l),wc(l) can be extracted from third order Navier Stokes equations.

We did this with the use of symbolic calculus (on maple) in the following way : we
obtained third order Navier Stokes equations, then we carried out the ¢ -average and s-

average of the axial and circumferential components of the third order momentum

equations using the third order continuity equation to eliminate uc(z) Lots of terms
vanished and we found equations for v, ( ) Note that Fukumoto and Miyazaki
([4] page 378) postulated vc(l) =0, kept wc(l) dependent of s, and did not have

equation for wc(]) . The following equations are obtained :
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- «(0)
Q)] 1 - 1 «(0) _ r o(1) a S 0) 14d
S(O)[a;ft —a2[=(wgl));}_]—55 (rvél));=5 s -575m 5 (14d)
¥ v

27
where s = .[o'(l)ds.

’ «(0)

«(0) (1) o . o) S
! Lz 1 ‘3(___“’5 ) = L@ s -sO =
ol M 2| LDy | |- = Ve _ ONF 5
st )[ = a r(rwc r)r " 2S r rz : 2 = s

2 27 i (146)

_ - N 05 -
+—l—(m(§)+c—4m<°>) J‘K(O)As(s,t)-b(o)ds— ja( As,1) 0 1Ods
4 £ 2 2

27 (1) 3‘(0) 27
=4
- Ia(o) iavc—i&(s——)‘ds— 5O J.G(O)wgi) (s,t)ds
0 0

- =
The left hand side of these equations are the same for vgl) (r,t) and wg’(r,t) than for

= o 1= _ y
v(o)(; t) and w(o)(r,t) . We may notice that even if initially wg )(r,O) =0, the right

hand side terms will induce wgl) (;,0) #0 when 1 #0. .
These equations for vc(l),wc(l) are linked to i(l)(s,t), so an equation for X'’ 1is
: ) O]
needed to have a closed system of equations for the first order solutions v.'"’,w,""’ and
XD | The best attempt to find this equation is by Fukumoto and Miyazaki ([4] page

; 1
382), where contribution from Navier Stokes equations up to order € havIe been fou;l;l1
in order to performed the asymptotic matching. We may note that in their expressi

the term due to first order curvature K (M is missing. Moreover, their expression for
XM is not complete, as local and non-local (named Q in [4]) contribution from Biot
and Savart integral are given only up to order £° in Fukumoto and Miyazaki ([4] page
373) and Callegari and Ting ([2] page 173), while order ¢! is obviously needed to

. sy . " g
obtain complete and correct equation for xM T.he complete express;{qn, lip rrt:s :
order, was performed in section 2. The matching is then done and lacking te

equation of XM are found :

5
& Cym o L o — ——3lns}}ﬁ
X -(X o?)?={C2—§K(1)(s,t)+z;1(()(s,t)ln£-4”KS[31n£+3+6

+{E21+Zm—K7{lns+%—lnS]}l‘)+fi‘ —(E;® 7)1
" (15a)
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Ci =7 [&O@ &0 Hs3 (£,0)de (15b)
0
* : 7 (0) 2) lK(l)(s,t) -
Cr=x_lim | [6O&nHs] (§0)dg - - =—=Inr (15¢)
)_‘—>oo 0 ”

@_, ¢ aw<°’(§,t)(:<°> £(0) WO ok Vs o
Hsy5 _2v(0)(§,t) Ze |t (s,0) o b (s,1) -250(0)(”) = (15d)
aviD 1) oW (&t «(0)
Hsff’=251<<°)(s,t)———°ﬁ§f +v(0)(§,t)K(l)(s,t)+2—V(O)f§’l)——*-wa;§ )[r (s,t)OB(O)(s,t)J

v
+ 6K (s, (g,0) + T KO (s,1) + 26w (£, K@ (5,0 T (5,1)

L, & O60vgn 00 L EKO.0u (60 2w &0

v o¢ i O Y (15¢)
g gK(l)(s,I)w(O)(é),) 5w(°)(,§,1) " afK(O)(s,I)w(O)(.f,t) 5W£I)(§,l)
VO oe NOPP EY;

This equation (15a) is the first order equation of motion of the central line. Fukumoto

and Miyazaki [4] (page 373) had written this equation without K M ; EI and terms
with the axial flux m. .

5. Conclusion :

A closed and complete system of equations (14d,14e,15a) for the first order
axisymmetric part v,V w. ") of the velocity field and for the first order central line :

X1 of a slender non circular vortex ring has been given.

It would be interesting to find a simple case where a solution to these equations can be
found and to compare these equations with those of a circular vortex ring [5].
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6. Appendix : S = .= I =
A(a) 1 J' t(a+a)x(X(a)-X(a+a)) B K(a)b(a) P
In this appendix, terms that appears in formulas of section 2 are given. ar _sn 'i(a) -X(a+ t;)l3 2“’!
T(a+a)

i % - - = m ” 1 e = -3
m=7rJ’a)2r erZﬁIW(O)I‘dr I =—7% I, = — Kmcosgt B ~ +S/2 IX(a)—X(a+a)|

: : 7 27 Blg.a)=Fpa)x [ | =

s - —= fi(a)a ii T(a)b

1 [(_ K _TZ)T . (KTSIW +3K, cosg)F - (KTCOS(D K, Sm(p)BJ + |¢7l3 (t(a) + K(a)n(a)a +(Kq(a)n(a) + K(a)T(a)b(a)

5
4—4”{ [[ —+lnS]KTsm(p+[ 3-g+31nS]Kscosrp)F
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5 1 a
—+lnSJKTcos¢+|:4———31nS}K sm(p)@ 3 = a
( 6 6 -2k @)i@) G
4 2
+([ B e s (B +| () | |7
2 ()+16 SZ 4cos [} +| In( )— L7 2
- p,a)e(X(a+a)- X(@)r. K*(a) b b(a)cosp
o S . C(p,a) = I [fa+a)x(X(a+a)- X(a))]+ a
i (@_1{ [ Ko+ aita+a)x (Ko +a)- R+ 2M1a +2) gl [K@+a)-%@)f ]
ia)= - = o
s [X(a+a) - X’ . .
n(a 0 W ] = X(a))] Ba + a) x (X(a + ) - X(@) where S is the length of the vortex ring.
[X(a +a) - X(a)
) [b(a +a) ¢ (R(a +a) - X(@))|(i(a +a) x (X(a + a) - X(@))) 7. Raforences :
[X(a +a) - X(a)
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