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Summary

As part of Task 2.2.3 of the C-Wake Project a computational code EZ-vortex is developed for
the motion of slender vortex filaments. We chose to implement a Slender Vortex Filament code
rather than a standard Vortex Filament one as it gives fast computation which is a requirement
of our task. This code is useful to have fast computation of the far field wake. The integro-
differential equations governing the motion of the vortex centerlines are either the Callegari
and Ting equations, which are the leading order solution of a matched asymptotic analyses, or
equivalent forms of these equations. They include large axial velocity and non-similar profiles
in the vortical cores. The fluid may be viscous or inviscid. This code is validated both against
known solutions of these equations and results from linear stability analysis. The linear and
non-linear stages of perturbed two-vortex and four-vortex wakes have been computed and
tested.

The analysis of the NLR experimental results in LST and LLF wind tunnels has been com-
pleted to obtain the physical parameters needed as an input of our code. As there are no long
wavelength 3D effects in these near- and mid- field experimental results, the physical parame-
ters of the last cross sections were extracted by our analysis from the data files and are used
as an input of our code by giving the initial conditions for the temporal computation of the far
field. We have done the computations for configurations 1, 2, 3, and 6 of NLR experimental
data: this is our parametric study of the NLR results.

It appears that our code needs to be coupled with near- and mid- field results to do a
parametric study with the wing parameters as an input. It is the only fast computation code
of the far field. It gives accurate results up to the trailing pair reconnection. It is a useful tool
to compute this part of the wake and it may be used to compare far field experimental data
from catapult, tower tank or flight measurements in real atmosphere. As a perspective a fast
engineering code could be developed from this code by adding 3D models of reconnection so
that to continue the computation through the trailing pair reconnection.
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I. INTRODUCTION

The potential hazard related to the two-vortex aircraft wake induces separation distances between aircrafts
and associated delay at landing and take-off, which contributes to the congestion of airports [1-3]. Present
ICAO separation rules in forces are conservative to minimize the risk of a possible wake encounter. Separation
distances -based on aircraft weight- are empirical.

It was therefore considered indispensable to address, within the 5th Framework Program of the EC, the Wake
Vortex Characterization and Control. The C-Wake project addresses the three following aspects: 1) the physical
aspects of a wake through wake characterization; ii) it produces application guidelines for the European aircraft
industry on how to control the wake vortex size and intensity; iii) it synthesizes findings in order to arrive at a
validated method of predicting a Large Transport Aircraft-Type’s wake characteristics with sufficient accuracy.

As to better understand the interest of our work in subtask 2.2.3 of this project, it may be interesting to
sketch a quick overview of the C-Wake organization. The C-Wake project consists of experimental work (Work
Package 1 [WP1]), numerical and theoretical work (WP2) and a synthesis task (WP3) as can be seen in Fig. 1.
WP2 consists of numerical computation of the near field (Task 2.1}, far field extrapolation of near field result
and prediction (Task 2.2) and theoretical study of unsteady effects (Task 2.3). Task 2.2 studies the effect of
modifications to generic wing on far field wake (Subtask 2.2.1), the effect of design modifications to Airbus-type -
aircraft wing on wake (Subtask 2.2.2) and the configuration assessment by simplified methods (Subtask 2.2.3).

We are the only one in subtask 2.2.3 who use a fully 3D method. Our goal is to study the effect of a simple
geometric configuration on near to far field wake by using 3D vortex filament methods. As it was defined in the
C-Wake initial Project [4], our work is in four steps: i) adaptation of a vortex filament method, ii) acceleration
of the method, iii) validation and iv) parametric study. It lasts from the middle of March 2000 to the end of
February 2002.

C-Wake Co-ordination Panel

WP 1 WP 2 WP 3
Flowfiaid Exparimental Flowfield Numerical & Synthasis &
Unsteady Effects Dasign Recommend.
Wake Vartex Evolution Wake Maodelling Paramatric Database
Mear-to-mid fiaid Mear to extanded fiald
Wake Vortex Evolution Wake Maodelling Synthesis &
Far field; flight test Mear-to-mid fiaid Low Vortex Dasign

Unsteady Effacts
Mear-to-mid finid

FIG. 1. C-Wake organisation

Vortex methods [5-8] are numerical methods of great interest to study vortical flows. The discretization is of
the vorticity field, rather than the velocity field, and is Lagrangian in nature. It consists of a collection of particles
(Vortex Particle methods [VP]) or filaments (Vortex Filament methods [VF]) which carry concentrations of
vorticity. The velocity field is recovered from the discretized vorticity field via the Biot-Savart law and a
numerical smoothing parameter is introduced to desingularize the Biot-Savart line-integral kernel. The vorticity
field is then evolved in time according to this velocity field.

We have implemented [9] a slender vortex filament (SVF) code based on asymptotic equations of motion
[10-12] derived by Callegari and Ting from the Navier-Stokes equations in the slenderness limit. For a closed
vortex let us briefly introduce this equation which is the heart of our work. A slender vortexr ring of circulation



I’ is a field of vorticity which is non-zero only in the neighbourhood of a three-dimensional curve €, called the
centerline. This curve is described parametrically by a function X = X(s,¢) which denotes a point on the curve
as a function of the parameter s, with s € [, #[, and the time ¢t. For each point on the curve C, the Frenet
frame (t,n,b) is defined with respectively the tangent, normal and binormal vectors. The thickness J of the
ring is of order / and the other length scales, for example the local curvature R or the length S of C are of the
same order L. Since the vortex is slender, a small parameter ¢ < 1 is defined as the ratio [/L. The velocity
field is non-dimensionalized using '/ L, all lengths using L, and the time using L?/I’. The equation of motion
of a non-circular slender vortex ring has been derived by CT from the Navier-Stokes equations using a matched
asymptotic expansion in e. At leading order the following equation was obtained

OX /ot — [0X /0t - t] t(s,t) = Q(s,t) + N(s,t) [~ Ine +InS(t) — 14+C,(t) + Cw ()] b(s,t) /4, (1)

where Q(s,1) is an integral given by Q(s,t) = A(s,t) — [A(s,t) - t(s,t)] t(s,t) with
T

1 4
A(5‘1):G/ 0'(S+Sl,f)
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t(s + s',t) x (X(s,t) — X(s + ,1)) ~ K(s,t)b(s,1) s’
IX(s,t) — X(s + 5, 1) 20, s ) |

s-}—a"
Here o(s,t) = |0X/0s| and A(s,s’,t) = [ o(s*,t)ds*. In equation (1) ' (f) and (' (t) are known functions

(see [10]) depending on the inner structure of the vortex at leading order in .

Using the Callegari and Ting’s equation Klein and Knio [11] have shown that it is not correct to compute a
vortical flows composed of several thin vortex filaments by a standard vortex filament (VF) method with only
one numerical filament per section of the thin vortex filaments (the so called thin-tube model): more than one
numerical filament per section is needed to insure the convergence of the numerical scheme. Ilowever, as it
would save computation time to have only one numerical filament per section, Klein and Knio [11] proposed
a cure: they have shown how to adjust the numerical desingularization parameter (the so called thin-tube
thickness) to real thickness of the slender vortex filaments so that the method gives correct results. As the
corrected thin-tube model is still stiff to be solved numerically Knio and Klein [12] removed this stiffness in the
improved thin tube models that they proposed.

We have adapted this numerical scheme for open vortex filaments which are periodic with a characteristic
wavelength and we have implemented it in a code named EZ-Vortex. The fluid may be viscous or inviscid;
the relative velocity field (i.e. velocity field minus filament velocity) is axisymmetric and may be similar (i.e.
Gaussian) or not (it can be a Rankine vortex or any axisymmetric vorticity profile). The evolution of the core
structure (diffusion and stretching) is taken into account in the asymptotic equation and so in the implemented
code.

Among the 3D vortex methods we have chosen to implement a Slender Vortex Filament method because
it is adapted to solve vortical flows composed of several thin vortex filaments as is a wake vortex in the far
field. A brief overview of the different vortex methods and of their characteristics are given in Appendix A. A
complete description of the slender vortex governing equations is given in Appendix B. The implemented code
EZ-vortex provides a useful and fast tool for the simulation of aircraft wakes in the far field. As we only consider
computations in the far field we direct the readers interested by three-dimensional vortex filament method in
the near field to the paper of Ehret et al. [13]. The thickness of the vortex core found in the wind tunnel
experiments [14] confirms the slenderness assumption: the vortex core thickness over the distance of the trailing
vortices is found to be of a few percents. We have implemented [9] a slender vortex filament method because the
cost of computation is smaller with this method than with Vortex Blob Methods or Vortex Filament Methods
[15]. This method is fast as it is based on the equation of motion obtained from an asymptotic expansion of the
Navier-Stokes equations in terms of the small thickness of these vortices. This method takes advantages of a
great theoretical work [10-12] in which lots of analytical calculus were carried out so as to take advantage of the
slenderness in order to obtain a simplification of the Navier-Stokes equations and to avoid the stiffness of these
equations which is inherent in this limit. A fully resolved 3D computation with a standard Vortex Filament
Method would have the same computational cost as a DNS of the Navier-Stokes equations. It would be outside
of the simplified and fast computation requirement of task 2.2.3. In literature fully resolved computations with
3D vortex Methods of the same cost as LES are under consideration by developing sub-grid models adapted for
vortex methods [16].

Section II of this report explain the implementation of the EZ-Vortex code. We first implemented the Cal-
legari and Ting equation of motion for closed and open filament with Gaussian core. Then we have extended
the slender-vortex-filament code EZ-Vortex to non-Gaussian vorticity in the vortex core and we have also im-
plemented the M1-method of Knio and Klein [12] because the line integral of this method is simple to compute
and because the time stepping can be explicit and allows to use an Adams-Bashforth time stepping which is
second order. Spatial derivatives can also been computed spectrally for closed and open filaments. In this code



we use a drawing of the filament at run time with the OpenGL library on a SGI workstation. The philosophy of
EZ-Vortex code is to keep programs as simple as possible and to provide documentation both by way of a text
[17] and of comments within the code itself. Appendix C gives the features of this code: it is the documentation
of this code [17]. We chose to have physical parameters in dimensional form as an input of EZ-Vortex. In this
way EZ-Vortex can perform both dimensional or non-dimensional runs.

In section 111 we give the validation of this this code for open vortex filaments against the linear stability
analysis of a two-vortex and four-vortex aircraft wake configurations. The amplification rate of unstable modes
of the Crow instability for two trailing vortices have been checked and also the period of oscillations of stable
modes. For the four-vortex wake the base flow is the stationary four vortices. The rate of growth and the
wavelength of the instability that we obtained compare favorably with the ones of Fabre and Jacquin [18,19]
who obtained their results from a linear stability analysis. Rennich and Lele [20] have shown that the destruction
of aircraft wake vortices can be accelerated by adding two flap-vortices between the trailing-edge vortices. Their
results were obtained both from a Navier-Stokes spectral code and from a simple vortex filament code. Our code
allows us to improve the previous results of Rennich and Lele [20]. Appendix D gives the validation for closed
vortex filaments and for other linear stability results. We analyze the influence of all the numerical parameters
to be sure to have converged results. In EZ-Vortex both viscosity and vortex stretching are taken into account.
The vortex stretching is not local as it is in the slenderness limit [21,22] and no axial core variations are taken
into account because it takes place on a very fast time [22]. For other Kelvin-wave phenomena the reader is
directed to the recent overview of M. Rossi [23]. The description of the slender vortex method and the validation
of EZ-vortex with stability results have been written in a paper [9] which has been submitted.

In section IV we give a brief overview of LST and LLF wind tunnel results given by NLR. These experimental
results are for a generic model: the SWIM model geometry, and consist in 6 model configurations. The LST
results are closer to the wing than the LLF one. We have to use these data as initial conditions of our numerical
computations. In September 2001 we got from NLR a set of 6 CD-Roms [24] with LST results and the associated
report [14]. There are no LLT results in these CDs nor rake data with LST. Contrary to rake data, some PIV
results with LST are unable to give the velocity field inside the vortices. Moreover rake data also give the axial
velocity component. In the beginning of September 2001 we got from NLR 1 CD-Rom [25] with all results: LST
(PIV and Rake) and LLF; and the associated report [26]. In these new data files the axial vorticity component
has already been computed. For most files the velocity field which was in several data files in the previous CDs
have been interpolated on a grid for the whole wake domain (behind the left and right hand wings). These files
make the experimental results far easier to handle. A correction was done to the velocity field in an last report
[27]. In order to generate the initial conditions of the EZ-vortex code from these experimental data we need to
have a physical analysis of the flow, i.e. to have the physical parameters: number of vortices, their circulation,
position and thickness. Unfortunately most of these parameters (individual circulation and thickness) are not
given in the NLR analysis report [26]. As we need it we have completed the analysis of NLR by computing
these physical parameters for the different experimental data files. An overview of this analysis is given in this
section IV. As can be seen from data files of NLR, there is no long wavelength 3D effect in these experiments.
There is first a merging of for filaments with either a 2D merging or a short wavelenght instability merging and
then a 2D motion of the two trailing vortices. As our code captures 3D curvature long wavelength effect, it 1s a
useful tools to extrapolate these experimental mid field to the far field by using the last cross section velocity
field. The analysis of the different last cross sections is carried out and we give in this section IV the values of
the physical parameters needed for the parametric study of next section.

In section V we carried out the computations of the different cases obtained in section IV. We then conclude
in section VI and give perspectives of this work and of the EZ-vortex code which has been proved to be of great
use for far field computations.

As was planned in the C-Wake initial Project [4], our work is in four steps: i) adaptation of a vortex filament
method,ii) acceleration of the method, iii) validation and iv) parametric study with the use of NLR wind tunnel
experimental results on a generic model: the SWIM model. Sections I and II are devoted to the two first steps
i) and ii): here the acceleration of the method was obtained by the choice of the implementation of a Slender
Vortex Method. In the choice of a standard Vortex Method the acceleration phase would have corresponded
to the implementation of a fast Poisson solver or of other tricks to accelerate the computation. Sections III is
devoted to the third steps iii) and sections IV and V to the parametric study step iv).

II. IMPLEMENTATION OF EZ-VORTEX: A SLENDER VORTEX FILAMENT CODE

The EZ-vortex code [17] is the numerical implementation of the Callegari and Ting equation (see [gs. (B1),
(B2), (B3), and (B5) in Appendix B) for closed filaments and of the associated versions for open filaments (see
Eq. (B12) in Appendix B). The philosophy of the code is to keep programs as simple as possible and to provide
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documentation both by way of a text [17] and comments within the code itself. It will be available through the
world-wide web and is adapted from the code EZ-Scroll developed by Dwight Barkley for simulating scroll waves
in excitable media [28,29]. This package uses OpenGL for 3D rendering or the Mesa library (public domain
implementation of most OpenGL routines). It should be possible to run on virtually any machine supporting
X. Setting macros of the C-preprocessor (defined in the main header file) to 0 or 1 allows to have a conditional
compilation of the code and to have a unique source-code with different equations of motion and with different
spatial and temporal numerical discretizations.

The physical parameters in the simulation are the initial stretched core radius dy, the initial axial flux mg,
the circulation I', the aspect ratio parameter ¢ = /L, and the stretched viscosity v = v/e? of the fluid. The
numerical parameters for the simulation are the number np of spatial points (nodes) on each filament, the time
step dt, the number nsteps of time steps and nb the number of periodic boxes for open filaments (see Fig.2).

A. Spatial discretization

The curve X is discretized by putting np points on the centerline, i.e. by an uniform discretization of the
interval s € [, 7[.

1. Derwvatives

First-derivative ot = dX/ds and second-derivative Kb = 90X /ds x 0°X/8s%/|0X/0s|* are approximated
by second order centered differences or spectrally computed via a Fast Fourier Transform (FFT). For periodic
open filaments of period A(t) in the e, direction [X(s + 2m,t) = X(s,t) + A(t)e,] the following periodic
function X(s,t) = X(s,t) — A(¢)s/(27)c, 1s defined. As it satisfies 5((5 +27,t) = 5((5,1‘) its derivatives can
be spectrally computed via a FF'T as for the closed filament. The first-derivative is then given by 0X/ds =
9X/8s + A(t)/(27)e, and the second-derivative by 9°X /9s% = E)QX/H.SE.

2. Integrals

The trapezoidal rule is used to compute any integral part of the equation of motion. In case of a periodic
open filament we take advantage of the periodicity and advance in time only a part of the filament (see Fig.2)
corresponding to a period A(t) (or an integer number of periods). The self-induction at point X(s,t) on this
part of the filament is found by adding two contributions (see Fig.2). The first one is the self-induction of a bit
of filament in a box of length A(t) centered on X(s,t). The second is the induction of the remaining part of the
open filament in nb boxes of length A(¢) from both sides of the central box. The self-induction part is obtained
with one of the equations (B1), (B2), (B3) or (B5) for a closed filament and the remaining part is obtained with
the mutual induction velocity formula (B11) as if it were coming from other filaments.

Left Box 2 Left Box 1 Central box Right Box 1 Right Box 2

Periodic part
FIG. 2. Periodic part of the filament, central box around X(s, t) and left and right side boxes.

The spatial discretization can be checked at initial time by testing the convergence of the Biot-Savart velocity
computation with the number of points and with the number of periodic boxes for open filaments.



B. Temporal discretization

The time stepping of the equation of motion is either an explicit forward Luler first-order scheme, an implicit
backward Euler first-order scheme with an iterative sequel that converges to the solution of the non-linear
algebraic system, or an Adams-Bashforth second-order explicit scheme. Explicit schemes can also be done on
place, i.e. without a temporary variable for the coordinate positions for the nodes of the filament.

Explicit schemes for equations with a local A'b term [Callegari and Ting (B1) or LIA (B2)] are always unstable
[30] and are conditionally stable for the simple de-singularized method (B3) or for the M1 de-singularized method
(B5) of Knio and Klein. An Adams-Bashforth second-order explicit scheme can be used with these later methods.
Moreover (B3) and (B5) need not to compute the local K'b term and are also easier to implement because their
non-local integral term is a simple expression whereas in the Callegari and Ting equation (B1) the integrand of
the integral term A is a subtraction of two terms and needs the computation of the A'b term and of the integral
distance function A(s,s’,t). The M1 de-singularized method of Knio and Klein (B5) is more advantageous
than the simple de-singularized method (B3) because contrary to this later method it is not stiff in the small
thickness parameter ¢ : as can be seen from direct numerical computation the simple de-singularized method
(B3) needs much more number of points to converge than the M1 de-singularized method of Knio and Klein.
It is interesting to have implemented all these different methods in order to compare their different advantages
from direct numerical computation and to avoid any implementing mistake by checking their convergence to
the same result. The convergence of every simulation is assessed by increasing the number of points and by
decreasing the time step.

C. Closed and open filament storage

In this subsection we explain the choices that we did to implement the numerical schemes. It is of interest for
anyone who would like to do such an implementation or go through the lines of the EZ-vortex code. Cartesian
coordinates (z,y, z) of nodes i on the filament j are successively stored in a pointer u and are managed by three
macros Ux(i,]), Uy(i,]), Uz(i,]), where Ux(i,}) is the coordinate z of the node ¢ on the filament j. The same kind
of pointer (us, u_ss, ...) and macros are used for the first and second derivatives, for ¢ and for the velocity
components. The index ¢ ranges from 0 to np+1 and the index j from 0 to nf—1, where np and nf are respectively
the number of nodes and of filaments. Points 0 and np+1 are added-fictitious points which may be of use.

For a closed filament the point of index np is at the same location as the point of index 1, whereas for an
open filament the point of index np is the translated point [with period A(t)] of the point of index 1. In the
spectral computation of the derivatives the FFT routine uses the points from ¢ = 1 to ¢ = np — 1 and the index
np — 1 is 256. For closed filaments we find the induced velocity on nodes i = 1 to ¢ = np — 1 (respectively ¢ = np
for open filament) and then move all these points.

For open filaments the self-induced velocity at any point X(s,¢) of index 7 is found as displayed in Fig.2:
temporary pointers (ux_tmp,uy tmp,uz_tmp) are introduced to store part of the filament in the central boxr
around this point ¢ which is stored at the central index (np + 1)/2 of these pointers (the number of points np
is an odd number). The same temporary pointers are also used for closed filaments. With these temporary
pointers the same procedure is then used to compute the velocity whatever point is under consideration. The
procedure to fill these pointers is different whether the filament is closed or open because indices have to be
managed differently. For open filaments the induced velocity of the nb copies on the left and right boxes is
added to the self-induced velocity of the central part.

D. Description of EZ-Vortex

The principal features of the code EZ-Vortex, the way to run it and to use it is given in the EZ-Vortex
documentation [17]. You can find this documentation in Appendix C.

III. VALIDATION OF EZ-VORTEX

Appendix D gives the validation for closed vortex filaments and for other linear stability results. In this
section the EZ-vortex code is validated against linear stability results of a two and four aircraft wake. We also
analyse the influence of all the numerical parameters to be sure to have converged results.
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A. Study of a two-vortex aircraft wake

In this subsection the EZ-vortex code is used to study a two-vortex aircraft wake which consists in a pair
of contra-rotating vortex filaments. It gives a validation of the code. All following simulations use the MI
de-singularized method of Knio and Klein with the explicit Adams-Bashforth scheme and with I' = £1. There
is no axial flow (mg = 0) and the fluid is inviscid (v = 0). Tlere, the vortex core is a similar vorter profile.
The initial reduced thickness is dy = 1 and so the small parameter ¢ is the initial thickness d5. The velocity
of the contra-rotating vortex filament pair of circulation +I" is V' = I'/2x L, where L is the distance between
the vortices. We checked that the code reproduces this velocity (data not shown). The stability diagrams can
be deduced from the study of Crow [31] and are recalled in figure 3. Ilere, we chose to display the wavelength
instead of the wavenumber and to plot the diagrams as a function of the initial thickness ¢ rather than the
ad-hoc cut-off length of Crow [31]. These diagrams are in dimensionless form (L = 1 and I' = £1.)

6 & -~
5 5
4l Unstable 4
A g Stable LA 3 Stable
/'//
ol ol " Unstable.
i / Stable ! il Stabl
// aole
G L L ;1 L L
0 0.1 0.2 0.3 04 % 0.1 0.2 0.3
€

A

0.4

€
FIG. 3. Stability diagram for symmetric (left) and antisymmetric (right) modes of a similar vortex pair without axial

flow: A 1s the wavelength and e is the initial thickness.

TABLE I. Numerical parameters: open vortices

Run A np dt nb nsteps CPU time™(s)

Straight filament 5 1.25 257 0.00026 8 600 330
Vortex pair period 6 1.25 257 0.00026 8 250 516
Vortex pair growth rate 7 - 101 0.0019 8 800 240

" Non Linear (NL) regime 8 10.21 " " " 7950 2520
Four vortices 51 mode 9 0.8976 61 0.0019 20 250 264

" NL regime 10 " " " " 872 930
Four vortices S1 or A mode 11 7.83 101 0.0019 8 250 306

" NL regime 12 " " " " 1744 2160
*SGI R10000 work-station at 225MHz
The period of the symmetric stable modes is [31]

4722 .
= (2)

where k = 2w /A is the wavenumber

W
X

w

/=1 — ¢+ k2L2Q)(1 + x — k2L%D)’
and

= k?L2Ko(kL) + kLK, (kL),
kLK, (kL),

Il

¥

2
(—1 +Iogﬁ +1/2—v4+Cy + Cu)/2.

Ilere, Ky and K; are modified Bessel functions of the second kind. The period of the antisymmetric modes is

given by [31]
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e

Figure 4 shows the period 7' for the wavelength A = 1.25 of the perturbed contra-rotating filaments (symmetric
stable modes) as a function of the initial thickness e. Numerical results (crosses in Fig.4 and Run 6 in Table
I) are in excellent agreement with the analytical result (solid line). This period is found in the same way as in
Appendix D.3.

10

00 0.05 0.1 0.15 0.2

€
FIG. 4. Period T for the wavelength A = 1.25 of the perturbed contra-rotating vortex pair (symmetric stable modes)
versus its initial thickness . The solid line is from the analytical result and crosses from numerical computation (Run 6

in Table I).

The growth rate 3 of the symmetric unstable modes is [31]

1
T 8wL?

3 VI =0+ k2L22)(1 4 \ — k2L23). (4)

The growing perturbations are planar standing waves with planes fixed at angle 6 to the horizontal [31]:

0 = arctan(/(1 + x — k2L23)/(1 — ¥ + k2L23)). (5)
\
R g | 80+
0.1 1 60- 1
Bmax emax ],,, e R e
40
0.057
20
0 : ; ‘ 0 L ; i
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

€ €
FIG. 5. Growth rate Bmar (left) and planar angle .40 (right) versus the initial thickness e for the most unstable
wavelength of the perturbed contra-rotating vortex pair (symmetric unstable mode). Same legend as in Fig. 4.

Figure 5 displays the growth rate 3,4 and the planar angle 6,,,, for the most unstable wavelength A(e)
(symmetric unstable mode) of the perturbed contra-rotating vortex pair as a function of the initial thickness e.
Numerical results (crosses in Fig. 5 and Run 7 in Table I) are in excellent agreement with the analytical results
(solid line). The initial amplitude of the perturbation is pg = 0.001 and the initial planar angle is deduced
from (5). It has been checked that the planar angle of the mode did not change during the computation:
reported crosses are the value of this angle at the end of the computation. The amplitude p(s,t) is given by

p(s,t) = [Z(s,t) — Z(t)]2 +[Y(s,t) — 0.5]2 where X = (XY, Z) and where Z(t) is the spatial average on the
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filament at time ¢t. The growth rate is given by the slope of the temporal function log[p(s,t)/p(0)]. It converges
with all numerical parameters (time step, number of points and number of boxes) and with decreasing initial
amplitude po. With an axial flux (mg /L' # 0) the ¢ axis of the previous figures is multiplied by exp(—2[mq/17%).
We checked that analytical and numerical results also agree for mq/I' = 0.6.

Figure 6 displays the evolution of the Crow instability of the most unstable mode in the non-linear regime
(Run 8 in Table I). For sake of clarity the curve of the centerline is represented by a tube with an arbitrary
core radius.

t=0 t=0.152 t=0.2945
y/,}—' 5 —‘J\' : / N,

e e

FIG. 6. Vortex Filament Simulation of the non-linear instability regime of the most unstable mode A = 10.21 for the
contra-rotating vortex pair. Initial amplitude p = 0.05, initial thickness ¢ = 0.02 and initial angle #(t = 0) = 47.63(deg).

Viscous and non-similar effects are implemented in EZ-vortex but could not be validated by lack of known
analytical results. The linear growth rate § found from the first time steps as before is almost constant with
the viscous parameter v = v/z? till ¥ ~ 4. The maximum amplitude on the filament p(t) as a function of time
is weakly affected by the viscosity (¥ = 1) in the non-linear regime. The simulations of the Rankine or the
witch-hat profiles (sec Appendix B) give almost the same maximum amplitude p(t) evolution as for a similar
core.

B. Study of a four-vortex aircraft wake

In this subscction the EZ-vortex code is used to study a four-vortex aircraft wake. It gives a last validation of
the code. As in the previous section all following simulations use the M1 de-singularized method of Knio and
Klein with the explicit Adams-Bashforth scheme, there is no axial flow (my = 0) and the fluid is inviscid (v = 0).
Here, the vortex core is a Rankine profile. The two trailing vortex pairs have the same axis of symmetry. Let us
denote I',, I';, L,, L;, §,(t = 0) and §;(t = 0) the circulations, the distances and the thickness of the outer and
inner vortex pairs. We introduce the dimensionless parameters R = L;/L, and (G = I';/I',. The initial outer
reduced thickness is d,(t = 0) = 1 and so the small parameter ¢ is the initial thickness of the outer pair.

TABLE I1. Four-vortex modes: linear stability (th.) and EZ-vortex (num.) results at ¢ = 0.1.

A Ié] A.,(deg) 6;(deg) 0= pi/po
Most amplified S1 mode (th.) [18]* 0.8976 2.91 105.86 131.24 57.4
" (num. Run 9 in Table ) " 2.94 111.04 130.20 52.8
Long-wave S1 mode (th.) [18]* 7.85 1.55 145.45 103.85 9.72
" (num. Run 11 in Table I) " 1.56 145.68 103.73 9.80
Long-wave A mode (th.) [18]* 7.85 1.469 116.90 167.03 9.58
7] (num. Run 11 in Table T) " 1.511 118.72 166.39 9.73

*results given by D. Fabre.

There is an exact stationary solution of the equation of motion (B12) provided that the following relation
between (¢ and R is satisfied [20]

3R+ R?

G=——5—.
SR? +1

(6)

The associated velocity V' is
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We checked that the EZ-vortex code reproduces this velocity for the ratio R = (.14 (associated (¢ is —0.4.) used
by Fabre and Jacquin [18].

As for the contra-rotating vortex pair sinusoidal unstable modes exist. The growing perturbations are
planar with planes fixed at angles 0, (outer trailing pair) and ¢; (inner trailing pair) with respect to the
horizontal [18]. Let ¢ = p;/p, be the ratio of the amplitudes. Fabre and Jacquin [18] carried out the
lincar stability study of this wake and gave results for R = 0.14 (G = —04), ¢ = 0.1, &,(t = 0) = 1,
0i(t = 0) = 05, ', = 1 and L, = 1. The growth rates and the associated modes of the most amplified
SI mode A = 0.8976 and for the long-wave S1 and A modes A = 7.85 are given in Table II. We have
reproduced these results with the EZ-vortex code by starting from a perturbation amplitude pg = 0.001.

v (7)

TABLE III. Four-vortex modes: lincar stability (th.) at ¢ = 0.02.

A 3 9.(deg) #;(deg) o= pi/po
Most amplified S1 mode (th.)* 1.2566 3.07 82.81 132.53 48.5
Long-wave S1 mode (th.)* 7.85 1.62 140.36 104.35 10.00
Long-wave A mode (th.)* 7.85 1.40 110.13 167.54 9.35

*results given by D. Fabre.

The growth rate 3 is obtained from the slopes of the temporal functions log[p.(s,t)/p.(0)] with the amplitudes
po(s,t) and p;(s,t) measured by
+ [Yo(s,t) — Y, (1)),

pi(s,t) = [Zo(s't) - Zo(t)]
Pi(s.t) = [Zils,t) = Zi(1)] " + [Yils,t) - Vi(®)]”, )

where X, = (X.,Y,,Z,) and Z.(t) and Y, (t) are the spatial averages on the filament & = o or i at time
t. We start with the linear stability results and carry out several computations starting with pg = 0.001 and
with (0,,0;, ¢ = pi/p,) from the final values of previous computation. It converges to fixed values reported in
Table II. We have carried out the same comparison for ¢ = 0.02 and shown that the small difference between
numerical and linear stability results disappears (Table III). This difference is thus due to finite ¢ effects. Figure
7 displays the evolution of these modes in the non-linear regime. The numerical parameters of the computation
are given in Table I (Runs 10 and 12).

2
)

Most amplified S1 mode A = 0.8976.
£=0.9500 £=1.3300

e e
i Y B

\
/ \ V

t=0 t=2.375 £=3.135
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Long-wave A mode A = 7.85.

t=0 t=2.375 s

FIG. 7. Vortex Filament Simulation of the non-linear instability regime of typical modes for the four-vortex wake.
Initial amplitude po = 0.001 and initial thickness ¢ = 0.1. {The visnalization of the filaments uses equal core radius even
if the computation uses unequal sizes.)

IV. ANALYSE OF WIND TUNNEL DATA

In this section we give a brief overview of the NLR experiments and results in wind tunnel on a generic model:
the SWIM model. We then complete the data analysis of NLR to find the physical parameters that we need
as an input (initial condition) of our EZ-vortex computation. We first explain how we do the analysis and then
give the parameters of the different runs to be done.

A. SWIM geometry and NLR experiments in LST and LLF wind tunnels

These experimental results are for a generic model: the SWIM model geometry, and consist in 6 model
configurations. Fig. 8 gives the photos of these 6
configurations and Fig. 9 gives the dimension of the wing and the lateral position of the spoiler elements.

)

Contf. 1 Contf. 2 Contf. 3
Part span flap Spoiler §; = 20 behind flap tip Spoiler §, = 20 near flap tip

Conf. 4 301'. 6

Spoiler §; = 20 near flap tip Full span flap Clean wing

FIG. 8. The 6 model configurations [25]
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FIG. 9. Wing of the swim model and lateral position of the spoiler elements [14]

The coordinate frame is (x,y, z) where r and z are respectively the down stream and the vertical directions.
The associated velocity components are (I7,1/,747). The wing span is b = 0.6 m and the mean axial velocity
Uy = 60 m/s. Fig. 10 gives the planning of the different tests in LST and LLf wind tunnels for the different
configurations and cross sections. Instrumentation is either PIV or 5-hole rake. The 5-hole rake allows to have
the axial component of velocity.

Phase 1 and phase 2 tests in the DNW-LST (phase 1 in italics)
X position Model configuration
x'b [m] ‘ 2 3 N 3 b
(=60 deg) (=0.9 degy (0.9 degy (or=7.5 deg) (=35 dey) (=8 deg)
0.75 0.45 P P P Pir PIV PIV
1.25 0.75 Rake/PIV | Rake/PIV | Rake/PIV Rake/P1V
2.50 .50 PIV PIV PV PV
5.00 3.00 | Rake/PIV | Rake/PINV | Rake/PIV Rake Rake/PIV Reke
7.50 4.30 PIV
10,16 | 6.10 | Rake/PIV | Rake/PIV | Rake/PIV Rake/PIV
Tests in the DNW-LLF wind tunnel
10,16 | 6.10 PIV PIV PIV PIV
1533 | 9.20 PIV PIV PIV PIV
29.83 | 17.90 PIV PIV PIV PIV

FIG. 10. Main flow-field tests in LST and LLF wind tunnels [14]



B. Results and data analysis from NLR

The NLR CD-Rom [25] gives all the results for LST (PIV and Rake) and LLF tests. It consists of different
ascil data files. They give the velocity components (over Up) and the computed axial vorticity component
on interpolated grids that cover all the flow field behind the wing. In these files there is a column for each
component on the grid. The number of grid points in y and z directions changes from one file to one other
and it is not given. In LST measurement PIV results are unable to give the velocity field inside the strongest
vortices. For cach data file the configuration number and the cross section position 2/b can be found from Table
3a to Table 3f in the NLR report [26]. For example Fig. 11 gives the velocity and the vorticity fields that we
plot with Matlab from the dat file rake02022.dat : rake data results for configuration 1 at x/b = 5.

04 -03 02 01 0 01 02 03 04
Y

FIG. 11. Velocity field and axial vorticity contourplot for configuration 1 at »/b = 3 (file rake021022.dat [25])

In order to generate the initial conditions of the EZ-vortex code from these experimental data we need to
have a physical analysis of the flow, i.e. to have the physical parameters: number of vortices, their circulation,
position and thickness. The result of the data analysis of NLR can be found from Table 3a to Table 3f in the
NLR report [26]. We can find from these tables the position of vortices and the total circulation on the left and
right hand side of the wing. This circulation is found both by a surface integral of the vorticity field (I'y) and
a line integral of the velocity field (I'.). For example for the run of Fig. 11 it gives: I'y = —1.125 m?/s and
I'. = —4.125 m?/s on the left hand wing and ['s = 3.937 m?/s and ['. = 3.953 m?/s on the left hand wing.
Unfortunately the number of vortices, their individual circulation and their core thickness are not given in these
Tables. As we need it we have completed the analysis of NLR by computing these physical parameters for the
different experimental data files.

C. Our analysis of the data files

We will present our analysis on the same run as in Fig. 11. We first find the center of the each vortex from
Fig. 11 and select a circular domain around its center (Fig. 12).

We then interpolate the vorticity field on a polar grid around this circular domain and do the angular average
of this field to obtain the radial velocity profile of vorticity (dot points in Fig. 13). As a Gaussian profile only
depends on the circulation ' and core thickness § (see Appendix B), these two parameters can been found from
an optimization routine to find the Gaussian profile that best fits the experimental one in the least square sense
(Fig. 13). We use usual Matlab routines to develop this analyzer of the data files and made this program as
automatic as possible. In the same way the amplitude of non-Gaussian moments (in the Laguerre series sense:
see Appendix B) can be found.

We find that [' = —2.7014 m?/s and = 0.011 m for the vortex in the circle of Fig. 12. Curiously rake
vorticity ficld are divided by 100 as regard to corresponding PIV-LST vorticity (for example compare files
rake4301.dat and piv7501.dat): we then have multiplied rake vorticity and PIV-LLF vorticity by 100. This
procedure of finding the circulation is much more accurate than computing a surface integral of the vorticity



(I' =~ —3.22 m?/s) or a line integral of the velocity (I' = —3.5 m*/s). The obtained thickness is also more
accurate than the one obtained by using the computed circulation and the extremum of vorticity. The circulation
on the left hand wing is I' = —4.903 m?/s and the one of the right hand wing is I' = 5.057 m?/s to be compared
with the values of I'y = 4.125 m?/s and ', = 3.937 m?/s found by NLR. We also can find the radial profile of
W — Uy and extract the axial flux mg in the vortex. We find that My/Uy = —0.00427 m? for the vortex in the
circle of Fig. 12.

0.2

0.1

01 02 03 04

-04 -03 -02 -01

e
X
FIG. 12. Contour-plot of vorticity (same data file as Fig. 11). The circle is the domain of analysis of the associated
vortex.
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.
FIG. 13. Radial axial vorticity ¢ profile of the vortex in the circle of Fig. 12. We show the experimental profile: dotted
line, the best Gaussian profile: dashed line and the best non-Gaussian profile: solid line.

From the analysis of the positions of the vortices we can display the wake of the six configurations (Fig. 14).
As can be scen from Fig. 14 there is no long wavelenght 3D effect in these experiments. There is first a merging
of the co-rotating filaments with either a 2D merging or a short wavelenght instability merging and then a
2D motion of the resulting trailing vortices. As our code captures 3D curvaturc long wavelength effect, it is a
usecful tools to extrapolate these experimental mid field to the far field by using the last cross section velocity
field. The last stage x/b = 30 of experimental data can be extended to 3D and we can carry out a temporal
computation with EZ-vortex. In order to do this we need to extract the physical parameters from the different
last cross sections.
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Configuration 2
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Configuration 3

Configuration 4

Configuration 6
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FIG. 14. Position of vortices in the LLS and LLF wind tunnels.



D. The results to be used as EZ-vortex input

The analysis of the different last cross sections gives:

TABLE 1V. Positions and characteristics of vortices

Configuration x/b y z r 4
1 29.83 -0.281 -0.381 -4.107 0.0237
1 29.83 0.245 -0.344 +4.187 0.0236
2 29.83 -0.272 -0.406 -4.358 0.0215
2 29.83 0.243 -0.378 +4.094 0.0235
3 29.83 -0.271 -0.408 -5.467 0.0262
3 29.83 0.218 -0.374 +5.467 0.0262
6 5 -0.260 -0.0475 -2.296 0.00612
6 5 0.280 -0.0625 +2.290 0.00598

In the last cross section of configuration 5 the vortices are still in the merging phase. We have no data files
for the last cross section of configuration 4. The last section of configuration 6 is at #/b = 5. For these reasons
we will use the last section of configuration 1, 2, 3 and 6.

The last stage 2/b = 30 of experimental data is extended to 3D and we carry out a temporal computation with
this initial condition. We recall that the Wing span is b = 0.6 m and the axial mean velocity is Uy = 60 m/s.
The physical parameters of the computation are : the circulation I, the core radius aspect ratio ¢ = §/L (where
L is the distance of vortices), the reduced viscosity v = v/e? = 15.69 107%/e? (m?/s) and the axial flux my.
The axial flux mg of the theory is related to the experimental axial flux My by mg = My/e(m>/s). As we have
no results for the axial flux in the last section we will assume my = 0. From Table IV we can find the remaining
parameters of the simulations (Table V).

TABLE V. Physical parameters of the simulations

Configuration I (m?/s) L (m) e o (m?/s)
1 + 4.15 0.527 0.0460 0.0077
2 + 4.23 0.516 0.0436 0.0082
3 + 5.47 0.490 0.0530 0.0056
6 + 229 0.540 0.0112 0.1290

The small core radius aspect ratio € is coherent with the slenderness assumption.

V. PARAMETRIC STUDY WITH EZ-VORTEX

The last stage 2/b = 30 of experimental data is extended to 3D and we carry out a temporal computation
with this initial condition. The computation is stopped at the collision time t. defined with the criteria of
collision d,;, /L = 4¢ where d,,;, is the minimal distance between the vortices.

The linear symmetric mode characteristics are given in Table VI

TABLE VI. Linear mode characteristics.

Configuration A (m) 60 (degre) 3 (1/s)
1 4.8336 47.61 1.992
2 4.7653 47.50 2.124
3 4.7673 47.61 3.028
6 5.8482 47.39 1.078

where A is the wavelength, ¢ the planar angle and 3 the growth rate of the most unstable mode. We checked
that EZ-vortex gives these growth rates in the linear regime for the 4 configurations.
The numerical parameters of the computations are given in Table VII.
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TABLE VII. Numerical parameters: open vortices

Configuration A np dt (s) nb nsteps CPU time*(s)
1 4.8336 101  0.000285 8 7950 2542
2 4.7653 101 0.000285 8 7950 2551
3 4.7673 101 0.000285 8 7950 2558
6 5.8482 151  0.00038 8 11925 8548

*SGI R10000 work-station at 225MTz

The linecar time is ¢, = 1/ where 3 is the linear growth rate. The result of the computations is given in
Table VIII, where t* = t/tq with to = 2rL%/1" [2].

TABLE VIIIL. Linear and collision times (po = 0.01 (m}.i.c. po/L ~ 0.02).

Configuration to (s) t (s) tr te (s) £
1 0.42 0.50 1.19 1.67 3.97
2 0.39 0.47 1.21 1.55 3.98
3 0.27 0.33 1.22 1.14 4.22
6 0.8 0.93 1.16 3.04 3.8

Numerical computation of configurations 1, 2, 3 and 6 are given in Fig. 15-18.

Configuration 1

t*=0 56

FIG. 15. Vortex Filament Simulation of the far wake for configuration 1.



Configuration 2

t*=0 t*=0.80 t*=1.61
—
/
==
t*=2.41 t*=3.21 t*=4.02

FIEIL

TFIG. 16. Vortex Filament Simulation of the far wake for configuration 2.

Configuration 3

t*=0.84 t*=1.69

tx=2.53 t*=3.37

— -
@
= ;\ /E

FIG. 17. Vortex Filament Simulation of the far wake for configuration 3.
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Configuration 6

t*=0.76

=
) FIG. 18. Vortex Filament Simulation of the far wake for configuration 6.
Our main conclusions for this parametric study are as follow:

o For the 4 configurations the collision time is about 3.3 times the lincar stability time (t. = 3.3t;).

e In dimensionless form all simulations and collision time are almost the same.

e In dimension form configuration 3 is the quickest to reconnect the vortices.



VI. CONCLUSION AND PERSPECTIVES

A code EZ-vortex has been developed to compute the motion of slender vortex filaments of closed or open
shape. The implemented equation is the M1 de-singularized method of Knio and Klein but other equivalent
equations are also implemented as a useful comparison. The fluid may be inviscid or not, the vortex core is
similar or not, and there can be an axial flow or not. The validity of all these equations are based on the
Callegari and Ting asymptotic results. The advantages of the different formulations and discretizations of the
associated equations are discussed. The philosophy of EZ-Vortex code is to keep programs as simple as possible
and to provide documentation both by way of a text and comments within the code itself. It will be available
through the world-wide web.

This code has been validated against known solutions of these equations and results of linear stability studies.
The linear and non-linear stages of a perturbed two-vortex wake and of a four-vortex wake model have been
studied till the reconnection phase, which is outside the validity of the asymptotic analysis and of the associated
integro-differential equations. In the linear phase the comparison with analytical stability results is excellent.
We give the optimal values of the numerical parameters that give converged results with the code.

The experimental data from NLR in the near- and mid- field have been further analysed to give the physical
parameters needed as an input in our code. The vortex filament thickness was not given in the NLR analysis of
their data and is an essential parameter to give accurate 3D simulations which take into account 3D curvature
effects. In these experiments the vortex core appears to be slender and there are no 3D long wavelength effect
in the experimental wake. The last cross section is used to do a parametric study of the far wake.

Our main results and conclusions are as follow:

o The EZ-vortex code is the implementation of a Slender Vortex Method and is very good tool to compute
the far wake up to the long wavelength reconnection phase.

o It includes large axial velocity and non-similar profiles in the vortical cores. The fluid may be viscous or
inviscid.

o It does not include short wavelength, merging and reconnection.

o It has been validated against linear stability results.

e It is very easy to handle; a documentation and typical parameters of convergence are given.
e It is the only fast computation code of the far field.

o It allowed us to compute temporal evolution of the far field from wind tunnel results provided that the
physical parameters of the experimental data in the last wind tunnel cross section are given.

o It needs to be coupled with near- and mid- field results to do a parametric study with the wing parameters
as an input.

o It was used to do a parametric study by extended to 3D the last stage z/b = 30 of LST and LLF wind
tunnels and running a temporal computation.

Our main perspectives are as follow:

o It may be a useful tool to compute the far wake (up to the reconnection phase) and may be used to
compare far field experimental data from catapult, tower tank or flight measurements in real atmosphere.

¢ Simple reconnection models [32-34] may be also implemented to go through the reconnection phase.

e A fast engineering code (in the same idea as the 2D code of Corjon [33]) could be developed from this
code by adding 3D models of reconnection so that to continue the computation through the trailing pair
reconnection.

o It is straightforward to add an potential background flow (i.e. lateral wind).

o It could be adapted to do spatial computation, i.e computation in a frame attached to the plane rather
than attached to the ground. Such kind of computation was used by Saghbini et al. [36] to study vortex
breakdown.

o It may be used to study other non-stationary four-vortex wake configurations as the one studied in the
linear regime by Crouch [37] or the non-linear stage of two rotating vortices of different circulations.
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e The higher order asymptotic result obtained by Margerit [38] may be implemented in order to get higher

order results, i.e thicker vortex core, and to offer the possibility of a quantitative comparison with a direct
numerical simulation of the Navier-Stokes equations.

It is recommended that EZ-vortex is used to develop an engineering fast computation code and to give a
comparison between numerical simulation and far field experimental data from catapult, tower tank or flight
measurements in real atmosphere. A comparison with far field LES computations would be also of interest.

It should be noted that a paper that describes the code and its validation has been submitted to Int. J. of
Numer. Meth. in Fluids [9].
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APPENDIX A: THE DIFFERENT VORTEX METHODS AND THEIR CHARACTERISTICS

In this appendix we give a brief overview of different vorter methods and we explain the interest of slender
vorter methods.

Vortex Methods are characterized by the following three features. i) The underlying discretization is of the
vorticity field, rather than the velocity field. Usually this discretization is Lagrangian in nature and frequently
it consists of a collection of particles or of filaments which carry concentrations of vorticity. 11) An approximate
velocity field is recovered from the discretized vorticity field via the Biot-Savart law. iii) The vorticity field is
then evolved in time according to this velocity field.

Among the different vortex methods [5] which have the above features, one can distinguish "Vortex Blob
Methods™ and "Vortex Filament Methods’. In Vortex Blob Methods the vorticity field is discretized by overlap-
ping blobs of vorticity and an equation is used to evolve in time the local strength of each blobs in order to take
into account the stretching of the vorticity field. In Vortex Filament Methods the vorticity field is discretized by
overlapping filaments and the stretching is automatically accounted for by the movement of discretized points
on the filament in relation to one another. In these two methods the viscosity may be taken into account
by a random walk or a deterministic technique. The Biot-Savart computation of the velocity induced by the
discretized field of N blobs or N bits of filaments leads to a N-body problem. The cost of this computation may
be diminished by so called "fast solver’ that use different tricks : multi-pole expansion for the far field, numerical
evaluation of a Poisson’s equation on a fixed grid (the Vortex-in-Cell method),... In the literature there are
proofs of the convergence of some of these numerical scheme to the Euler or the Navier Stokes equation in 2D
or 3D.

From the point of view of perturbation methods Callegari and Ting [10] have derived an equation of motion
for the centerline of ’slender’ vortex filaments from the Navier Stokes equations thanks to a matched asymptotic
expansion in terms of the thickness of the filament. We call ’slender vortex filament methods’ the class of
numerical methods which are based on the numerical discretization of this equation. These methods are inviscid
or viscous and have the advantage to be derived from the Navier Stokes equations. In these methods the thickness
of the filaments has to be small, they do not take into account short waves [39] and the distance between two
filaments has to be greater than their thickness and so these methods do not allow reconnection of vorticity.
Let us recall that a slender vorter ring of circulation I' is a field of vorticity which is non-zero only in the
neighbourhood of a three-dimensional curve C, called the centerline. This curve is described parametrically by
a function X = X(s,t) which denotes a point on the curve as a function of the parameter s, with s € [—, 7[, and
the time ¢. The thickness & of the ring is of order [ and the other length scales, for example the local curvature
K or the length S of C, are of the same order L. Since the vortex is slender, a small parameter ¢ < 1 is defined
as the ratio {/L. Using a careful matched asymptotic expansion in the Navier-Stokes equations, Callegari and
Ting [10] found the following equation of motion

OX /ot = Q +

K(ff” [~ loge +log(S) — 1+Cy(t) + Cu(t)] b(s, 1), (A1)

where Q = A(s,t) — [A(s,t)-t(s,t)] t(s,t) with

+m
1 f ’ s/t X(s,t) — X(s+ ', K (s,t)b(s,t
stm= L ooty [HeRf) KERInY - Ko 610 KIOOS |,y
4 IX(s,t) — X(s + &', )| 2[A(s, ', 1)]
-7
sts’
and A(s,s’,t) = [ o(s*,t)ds*. Here the velocity field is non-dimensionalized by I'/L and all lengths by L. In

this Equation (A1), C, (¢) and Cy, (¢) are known functions [10] which describe the orthoradial and axial evolution
of the inner velocity in the core. This Equation (A1) holds for a vortex ring with axisymmetric structure at
leading order and no axial core variation at this order.

Let us recall that the induced velocity of a curved vortex filament of zero thickness, i.e. a line vortex, near
its centerline is known to have a binormal component proportional to its curvature and to the logarithm of the
distance to the centerline [40,41]. The induced velocity on the centerline is thus infinite and this line vortex
model is not the leading-order part of the expansion of a slender vortex filament in terms of its thickness. From
the point of view of perturbation methods the slender filament corresponds to a boundary layer near its moving
centerline. The original Navier-Stokes equations are then stiff to be solved numerically. By using a matched
asymptotic expansion in terms of the filament thickness Callegari and Ting [42,10,32] have derived an equation
of motion for the centerline from the Navier-Stokes equations. SVF are numerical methods which are based on
the numerical discretization of this equation [43].



Previous to this matched asymptotic derivation several ad-hoc desingularizations of the Biot-Savart self-
induction of a line vortex were proposed [44]. These methods introduce an ad-hoc parameter of desingularization
to take care of the finite thickness of the filament. In the cut-off method [31,45] the desingularization is obtained
by cutting a neighborhood of the induced velocity point in the Biot-Savart self-induction of a line vortex: the
introduced cut-off length is the ad-hoc parameter of desingularization. This cut-off method was used in most
stability studies of slender vortex filaments [31,46]. For example, with the cut-off integral technique [31,45] an
ad-hoc cut-off of the line integral (A2)

L[ td) x (x—X(d)), ,

= | R (A2)

v(r, ¢, a)

gives a de-singularization of this integral in terms of the distance » to this line and yields the equation of motion:

st x (X(s,t) — X(s,1))

ds’, A3)
IX(s,t) — X(s', 1) o (

T T
9X /0t = E./ o(s', 1) &
1

where [ = [0,27[\[s — sc,s + sc[ and s. is an unknown small parameter called the cut-off length. This integral
(A3) is singular in terms of the small parameter s, and can be expanded in terms of this parameter. ’

By a direct comparison between such ad-hoc equations of motion and asymptotic equation of motion Widnall
et al. [47,48] and then Moore and Saffman [49,41] give the relation between the cut-off length and the inner
structure of the filament. More recently Margerit et al. [21] did the comparison with the Callegari and Ting
equation. With this relation the cut-off line-integral equation of the centerline is equivalent to Callegari and
Ting equation. The comparison between the expansion in s. of A3 and (A1) leads to

<

Sc(s,t) = - exp (1 — Cy(t) — Cu(t)). (A4)

20(s,t)
This gives the relation between the cut-off length s., the reduced thickness ¢ and the inner-core parameters
'y (t) and Cy(t) of Callegari and Ting. So Equations (A3-A4) are equivalent to Equation (A1), except that,
when s, of (A4) is plugged into (A3), the integral is singular in terms of ¢, while the integral A in (Al) is not.
This comparison can be done with other ad-hoc desingularisation methods. The numerical discretization of
these equations gives other Slender Vortex Filament methods. Ilowever, the resulting justified desingularization
methods are still stiff to be solved numerically as the Biot-Savart desingularized integral of these methods is a
singular integral in the parameter of desingularization: the centerline in the neighborhood of any peint on the
filament is a boundary layer for the induced velocity contribution at this point and so needs extra discretized
elements.

Vortex Filament methods discretize the field of vorticity by a bunch of overlapping filaments. The velocity
induced by a singular vortex filament C of vorticity

w=dct = /;d(fo(a’))t(a')da’. (A5)
) Je
v = LB e it = /C K(x — X(a') x t(a')dd’, (A6)
where
K(x) = —[1/(4m)]x/|x[>. (A7)

As the velocity on the filament is singular, Vortex Filament Methods introduce a de-singularization parameter
o, such that the velocity induced by a regularized vortex filament of vorticity

Wy = [o(x) +dct = j fo(x = X())t(a')dd, (A8)
1s
Vo = (Ko (x)x) % dct = /C Kq(x — X(a')) x t(a')dd’, (A9)
where
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Ky (x) = K * fo(x) = —g0 (x)x/]x|?, (A10)
with

Jo(x) = f(|x|/e) /0, (A11)
9o (x) = g(|x|/0). (A12)

Here f is a function such that L'lﬂ'fgoQ F(r)yridr = 1 and g(r) = j(: F(€)€2dE. The bunch of vortex filaments is
evolved with the induced velocity (A9) and a diffusion step can be superimposed. Vortex Blob methods are
similar but use an added dynamic equation for the evolution of the strength of each vortex blobs. Instead of
computing the velocity field from (A9) Vortex in Cells (VIC) methods solve the Poisson’s equation

P, = —ti, (A13)

where 1), is the potential vector such that v, = ¥V x #),. In these methods fast poisson solver can be used.

By using the Callegari and Ting equation Klein and Knio [11] have shown that it is not correct to compute a
vortical flows composed of several thin vortex filaments by a standard VF method [5] with only one numerical
filament per section of vortex (the so called thin-tube model): more than one numerical filament per section
is needed to insure the convergence of the numerical scheme. Ilowever, as it would save computation time to
have only one numerical filament per section Klein and Knio [11] proposed a cure: they have shown how to
adjust the numerical desingularization parameter (the so called thin-tube thickness) to physical thickness of
the slender vortex filaments so that the method is correct. This corrected method is based on a comparison
with the Callegari and Ting equation of motion and gives another Slender Vortex Filament method. As for
the justified desingularization methods and for the same reason, the resulting corrected thin-tube model is still
stiff to be solved numerically. This stiffness of the corrected method is now removed in the improved thin tube
models proposed by Knio and Klein [12].
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APPENDIX B: THE GOVERNING EQUATIONS

In this appendix we give the integro-differential equations governing the motion of the centerline that we
have implemented in the EZ-vortex code. They are either the Callegari and Ting equations, which are the
leading order solution of a matched asymptotic analysis [10], or a simple de-singularized method, or the M1
de-singularized method of Knio and Klein [11,12]. Even if these equations are equivalent their discretized form
may be more or less advantageous from the point of view of their numerical stability or of the simplicity of their
implementation as shown in Sec. Il. For its historical interest the Local Induction Model (LIA) has also been
implemented even if it is not equivalent to the previous equations.

1. The Callegari and Ting equation of a closed filament

The Callegari and 'T'ing equation is [10]
K (s,1)

i

0X /ot = [~logz +1og(S) — 1+C, (1) + Cuw (1)) b(s,t) + A(s, 1), (B1)
where X(s,1) is the centerline of the filament at time ¢, s € [, 7[ being a parameter on the filament; I' is its
circulation and K is the local curvature. The small parameter ¢ is the asymptotic parameter of the expansion
and corresponds to the aspect ratio §/L, where J is the radius of the vortex core and L a typical longitudinal
length. S is the length of the closed filament, (t,n, b) is the Frenet frame of the curve X, and (', (t) and 'y (t)
are known functions that depend on the orthoradial and axial evolution of the inner velocity in the core. Ilere,
A(s,t) is the non-local self-induction of the filament and is given by

t(s+s',1) x (X(s,t) — X(s + 5, 1)) _ K(s,t)b(s,?) ds’

IX(s,t) — X(s + 5',1) 2[A(s, ', 1)

+m
e s
A(s,t) = = o(s +s,1)

'

S8
where o(s,t) = [0X/0s|, and A(s,s',t) = [ o(s* t)ds*.

5

2. The core-structure functions C,(t) and C.(t)

The velocity field in the core is described by introducing the local curvilinear coordinate system M(r, p, s) and
the curvilinear vector basis (e,,c,, t). This system is defined in the following manner; if P (s) is the projection
on the centerline X of a point M near the curve then PM is in the plane (n,b) and thus polar coordinates
(r,) can be used in this plane with the associated polar vectors (e, e,). In the asymptotic theory [10] the
relative velocity V is defined by v = 9X /8t +V where v is the fluid velocity. We denote by (u, v, w) the radial,
circumferential and axial components of V = ue, 4+ ve, + wt.

The expressions of the core-structure functions ', (t) and Cy, (¢) are different depending on the initial leading-
order velocity profiles in the core and on the viscosity of the fluid. In this subsection we successively give the
velocity profiles and the core-structure functions C, (¢) and ', (¢) for an inviscid, similar and non-similar vortex
core.

a. Inviscid vortex core

If the fluid is inviscid the leading-order circumferential and axial components of the relative velocity field are
in the form [32]

v(r.1) = vo(r/8) [So/SO] 712,
w(r,t) = wo(r/8)So/S(t),

where = r/c is the stretched radial distance to the filament, § = J/¢ is the stretched radius, [vo(n =
7/80), wo(n = /dp)] is the initial velocity field, and Sy is the initial length of the filament. The e-stretched
radius 9 is

62(t) = 83S0/S(t).



The inner functions are given by [32]

O (1) = Oy (0) — log 6(t),
Cu(t) = Cu(0) [So /S

where (7, (0) and (', (0) are the associated initial core constants.

b. Similar vortexr core

The circumferential and axial components of the relative velocity field for a similar vortex are [32]

U(r‘t) - L |:1 N 6_(i;/5)2:| ’ IU(T'I‘) = 5 <ﬁ)d 6_(F/5)25

27r 02 \ S

where r and § are defined as before, and myg is the initial axial flux of the vortex. The stretched radius J is
given by [32]

2 =9 Ag'
0 =6 5]
52
I, P
v + 52
ot Gt
9 S(t
0 = ﬂlt// ( )dt'.
0 S[]

9

where v = v/e” is the stretched kinematic viscosity of the fluid of kinematic viscosity v. The inner functions
are given by [32]

Cy(t) = (1 4+~ —1n2)/2—1In(d),
('u' (t ) = —2( S(j /S)4 [771@ //(FJ)] - y
where v denotes Luler’s constant. The effect of the diffusion is easily seen in these expressions through d; (the

diffusion-added e-stretched thickness of the core) in § and the influence of the stretching through the ratio Sy/S.
The inviscid-similar vortex corresponds to v = 0.

c¢. Non-similar vortexr core

If the flow is viscous (v # 0) and the core is non-similar, the circumferential and axial components of the
relative velocity field are in the form

1|0 e % O 52 B
oryt) = o [; (1—e ' )+e ' ;oODnPH(n”)lp"},

S(t) 2

n=1

27 S 1% |m o
lU(I’,l‘) = 37 [i] I:;Oe_7’_ + e Z(Sé(jn[ln(ﬂz)l;n] s

where n = /4 and the stretched radius § expression is the same as for a similar vortex. Ilere, L, are the
Laguerre polynomials, P,(n?) = L,_1(n*) — L. (n?), and (C,, Dy) are the Fourier components of the initial
axial velocity wy and tangential vorticity (o = [d(rvg)/0r]/ 7 :

Co = / wo(n) Ln (n*)ndn,
re
Dn = / Co(m) Ln (n”)ndn.
Jo
In particular we have Cy = mg/2762, Dy = I'/2md3. The inner functions are given by
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Apm = / ™ L, (x) Lo (x)da
0
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Let us give two examples of non-similar cores with the same circulation as the similar vortex (s(n) =
[ exp(—n?)/md3 of thickness dy. The first one is the Rankine vortex:

r
Coln) = ™0

ifn <1,

0 ifn>1.

The second one 1s the witch-hat vortex:

r n .
— |1 - — fn<yv3,
. 71'(55( ﬁ) = V8

Co(n) =
0 if n > V3.
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FIG. 19. Vorticity ¢o63 /T (left) and circumferential velocity vodo/T" (right) versus n = 7/do. The solid line is from the
similar vortex, the dotted line for the Rankine vortex and the dashed line for the witch-hat vortex.

3. The Local Induction Approximation (LIA) equation

The Local Induction Approximation (LIA) equation is

9X /ot = 51-‘4(;—” [ log e + log(S) — 14C (t) + Cu(t)] b(s,1). (B2)

In this approximation the non-local self-induction A(s,?) of equation (B1) is not taken into account. This
regular term is indeed negligible in the small ¢ limit.
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4. A simple de-singularized method

One of the simplest justified de-singularized equation is [44]

5

OX ot = / a(s'.t)[

6(s", 1) x [X(s,t) = X(s" )] (B3)
4m . q 3/20° ]
X (s, 1) — X(s',1)]" +]

with
se(s,t) = eexp [y (t) — Cu (1)] - (B4)
This method is very easy to implement. Ilowever, as already explained in the introduction, this equation is still

stiff to be solved numerically and so needs extra discretized elements near the point on the curve where the
velocity is to be computed.

5. The M1 de-singularized method of Knio and Klein

The M1 de-singularized equation of Knio and Klein [11,12] is

) . 100.(0,1/()‘1["7) _
X/ot = 9y —Egg) B:
() /()1 Vo, + (V 1 v ,) log(og/m) ( ))
where
r s/ 5,1) — X(s X (s, 1) — X(s',t
VO,:£ /U(Sl,t)t(é‘i)X[X(j,t) (ivt)]h(p((j*t) (“" )|>dbl,l:1,2 (B())
4r [X(s,t) — X(s' . )] o
with #(r) = tanh(®) and
MM = cexp (C™ + 1 - Cy(t) — Cu(?)) (B7)
g1 = 30’mnx,\ (BS)
oy = 207, (BY)
Omar = ds max o(s,t). (B10)

s€[0,27]

With the choice of #(r) = tanh(r?), the C*"™ constant is C'**™ = —0.4202 as obtained by Knio and Klein [12].
It can be computed from Eqs. (4.23), (4.22) and (3.23) of Klein and Knio [11] with a change of sign of Cgll)'”m
in their equation (4.23).

Through a direct matched asymptotic expansion in o; of (B6) and a comparison of the associated expanded
equation of motion with the Callegari and Ting (B1) equation of motion we obtain the following expression of
the C*™ constant

5

2 ) e — 1
cttm — —log(4) + / k(s)/sds +/ Lda‘
Jo 2
for any function #(s) such that #(s) = 1 at infinity. The choice of x(r) = 4m [ €2f(€)dé with f(r) =
73/ exp(—r?) can be analytically computed and gives C*'™ = —1 4 0.5y where 7 is the Euler’s constant.

6. Mutual induction and open filaments

In case of several filaments X; their induced velocities

J .Gj(sl,t)t'i(SI‘t) X (X(S,i) — Xj(sl,t))ds,

i 1X(s,8) — X, (s', 1) (B11)
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are added to the self-induced velocity of X.
A periodic open filament of wavelength A(¢) in the axial ¢, direction satisfies X(s+2m,t) = X(s,t) +A(t)c..
From Callegari and Ting’s equation [10] one can deduce the following equation for such a filament:

OX/Ot =TK (s,8)[~Ine +InA(t) — 1+, (1) + Cuw(t)] b(s, 1) /4T + A(s,1), (B12)
where A(s,t) is the non-local self-induction of the filament and is given by

t(s + ¢, 1) x [X(s,1) — X(s + 5',1)]
IX(s.t) — X(s + &', )"

A1) g K(s, t)b(s,t)] ,,
—H ( ~— — |A(s, s 1‘)|) (s s B (s, s 0] ] ds’,

| R
A(s,t) = — / a(s+s',t)

where H is the lleaviside function. The expression of the core-structure functions can be obtained by replacing
the finite length S(¢) by the wavelength A(t) of the periodic filament in the previous expressions of a closed
vortex. For such a filament equations (B2), (B3) and (B5) can be rewritten in a similar way as equation (B1)
becomes (B12). -
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APPENDIX C: EZ-VORTEX DOCUMENTATION

1. General

The EZ-Vortex package uses OpenGL for 3D rendering and has been optimized for use on SGI workstations.
By using the Mesa library (public domain implementation of most OpenGL routines) it should be possible to
run on virtually any machine supporting X. EZ-Vortex could be run on a PC with the Linux operating system.
See http://mesa3d.sourceforge.net/ Note, you can run without graphics, but you must have OpenGL (or Mesa)
header files and libraries to use the code.

This code is adapted from EZ-Scroll a Code for Simulating Scroll Waves developed by Dwight Barkley
(http://www maths. warwick.ac.uk/~barkley/ez software.html) with courtesy of Dwight Barkley. The EZ-
Vortex package (in particular this document) is under development. There are aspects of the code which
ones may not be happy with, but to my knowledge everything works correctly.

The philosophy of the original code and this one is to keep programs as simple as possible and to provide
documentation by way of comments within the code itself. The user is expected to modify the programs
according to his or her needs. The bulk of the package is devoted to graphics. Almost all of the execution time
is spent in a loop in the routine Step() in ezslep3d.c. .

The computational methods are described in more detail in the following references. Ref. [29] describes the
3D implementation of the initial Code EZ-Scroll. Ref. [10] describes the asymptotic derivation of the Callegari
and Ting equation of motion. Ref. [50,12] describes the equations and the computational methods. Ref. [11,21]
describes the expansions of the Biot and Savart law. In Ref. [22] the non-similar core equation are summarized.
If you generate publications from using EZ-Vortex, I ask that you cite the Margerit et al. paper [17].

2. Running EZ-Vortex

Files: You should have the following files:

ezvorter.c, ezstep3dd.c, ezgraph3d.c, ezopengl.c, ezvorter.h, ezstep3d.h, ezgraph3d.h, ezopengl.h, task.dat, ic.m,
fe.m, history.m, and Makefile.

You will probably want to save copies of these files (in compressed tar format).

make: It is up to you to edit Makefile as necessary for your system. You can either compile using SGI C (cc) or
else using GNU C (gee). You may, if you wish, specify NP (the number of point on a filament) etc. at compile
time. Then these will be ignored in the task file.

Note: On an SGI, using the SGI C compiler cc with -DNP etc gives the fastest execution. Using the GNU G
compiler gee with -DNP is slightly slower and gee without -DNP is slightly slower still. Using cc without -DNP
is terrible and should not be used, i.e. if you want to specify the number of grid points through the task.dat file,
then you should to use GNU compiler and not the SGI C compiler. This is still being looked into.

Note: in our laboratory the LOADLIBES macro in the makefile is

e SGI machine (Berlioz):
LOADLIBES = -1GL -1X11 -1Xext -lm -I/usr/include

e linux machine (Liszt):
LOADLIBES = -I/usr/X11R6/include -L/usr/X11R6/lib/ -1GL
-L/usr/X11R6/lib/ -1X11 -Im

Make ezvorter by typing make. Then run by typing ezvorter. A window should open containing an initial
condition for the vorticity field, i.e. one or several closed or open filaments. The centerlines of the filaments are
plotted. Hitting the space bar in the EZ-Vortex window will start the simulation. This is a coarse resolution run
showing the speed possible with EZ-Vortex simulations. With the pointer in the EZ-Vortex window, you can:

(1) Switch between curve display, worm display and no field by typing ¢, w, or n respectively. The worm

display is a tube display with a thickness that allows to have a 3D view without rotating. Without
rotating, no 3D view can be seen from the curve display. The tube radius is only geometrical: it is not
linked to the physical radius which may change due to the global stretching or to diffusion.

(2) Pause the simulation by typing p, and resume by typing a space.

(3) Rotate the image by first pausing the simulation, then by holding down the left mouse button and moving

the cursor.
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(5
(6)

(7)

The key r resets the view to the initial (start up) view, and = sets the view to looking down the z-axis
with the z- and y-axes in the usual orientation. This view is useful for moving the image.

The arrow keys move the image in the x-y directions. The + key moves the image up the z-axis and the
— moves it down the z-axis. Again, for moving the image it is best first to have set the view by typing z.
Stop the simulation by typing:

q for soft termination with all files closed or

[SC for immediate termination without writing final conditions (equivalent to typing control-C' from the
shell).

Snapshot the window (on a SGI workstation) by typing s

After a successful run, you will have a file fe.dat in your directory which contains the final conditions of the
run. If you copy this file to ic.dat, then the next time you run ezvorter, this file will be read and used as an
initial condition. (The files ic_dat.m and fe_dat.m are Matlab files that can also be used to see initial and final
conditions.)

3. Equations

You have the choice between four equations of vortex filament motion which are implemented in ezvorter.h.
These equations are given in Appendix B.

4. Compilation Macros

The main compilation parameters are in ezvorter.h:

°

You can choose the equation of motion whether the macros LOCAL_INDUCTION, CALL_AND_TING,
DESINGU, and M1_KNIO_KLEIN are set to 1 or 0.

You can choose closed or open filament whether the macro CLOSED is set to 1 or 0.

You can have graphics or not at run time whether the macro GRAPHICS is set to 1 or 0.

You can snapshot different history steps if the macro MOVIE is set to 1 (only on a SGI work station).
You can run a history.dat file instead of computing whether the macro COMPUTE is set to 1 or 0.

You can have a non-similar part of the core or not whether the macro NON_SIMIL_PART is set to 1 or 0.
The macro SIMIL_PART has to be set to 1 in any case.

You can have an uniform core by setting the macro SIMIL_.PART to 0 and the macro UNIFORM_CORE to
1 (to be coherent you have to choose nu_bar=0 in task.dat).

You can choose to have spectral spatial derivative or not by setting the macro SPECTRAL to 1 or 0.

You can choose to have an explicit (order 1) time stepping with the macro EXPLICIT, an implicit one
with the macro NEWTON, and an explicit Adams-Bashforth with the macro ADAMS_BASHFORTH. The
explicit methods (order 1 or Adams Bashforth) can be performed either with a Jacobi iteration or a
Gauss-Seidel one whether the macro GAUSS SEIDEL is set to 0 or 1. The Callegari and Ting method and
the LIA method are numerically instable with an explicit (order 1 or Adams Bashforth) scheme either
a Jacobi or a Gauss-Seidel stepping is used. The M1 Knio and Klein method is stable with an explicit
scheme.

You can test the convergence of the Biot-Savart velocity computation at initial time if the macro
CONV_ANALYSE is set to 1. A file look is then generated with three columns associated to the three
components of the velocity on the filament. The convergence can be assess with the number of point and
also with the number of periodic boxes for open filaments.

You can have an automatic motion of the graphic window in the z direction or not whether the macro
MOVE is set to 1 or 0.



5. Parameters

The parameters are either set in the routine Generate_ic() at the end of ezvorter.c when these vortices are
initially created or in the file task.dat. The parameters of task.dat are loaded at the beginning of a run and so
vou need not to re-compile ezvorter when these parameters are changed.

In the case of similar vortex filaments delta_0_bar_param is the initial stretched core radius dy, m_O_param

is the initial axial flux mg, gamma param is the circulation T', and epsilon is the reduced thickness . They
are parameters of the core structure. nu_bar is the stretched viscosity v of the fluid. Thus the “physical”
parameters in the simulation are: delta_0_bar_param, m_0_param, gamma_param, epsilon, nu_bar and nf the number
of filaments. The parameters delta_0_bar_param, m_0_param, gamma_param are selected for each filaments in the
routine Generate_ic() at the end of ezvorter.c when these vortices are initially created. The parameters epsilon
and nu_bar are set in the file task.dat.
The “numerical” parameters for the simulation are: np = number of spatial points in each filament, ts = time
step, n_b = number of periodic boxes (for open filaments) and are also set in the file task.dat.
The other parameters set in task.dat are:
Number of time steps to take
Time steps per plot. Also set the number of time steps per filament computation.
error_stop. [irror to stop the Newton iteration for the implicit method.
Time steps per write to history file and of snapshot if MOVIE is set to | in ezvorter.h

initial field display : curve or worm
initial condition type : from 0 to 12.
output type : ascil or binary

verbose

These are more or less self-explanatory.

If Time steps per write is non-zero then the filament data will be written to a file (history.dat) every Time steps
per write (whether or not there is any graphics) which can be executed by ezvorter with the macro COMPUTE
set to 1. (The filaments will also be saved every Time steps per write to a file (history_dat.m) which can be
executed with matlab.)

I leave it to you to look at different initial condition types at the end of task.dat and ezvorter.c. The number
of filaments nf set has to be coherent with the initial condition chosen. You can choose between :

0) Oscillations of a Vortex Ring (Standing wave)

1) Oscillations of an ellipse in a plan y-z

2) Oscillations of a Vortex Ring (Travelling wave)

3) Oscillations of a triangle Vortex Ring

(

(

(

(

(4) Motion of a Lissajous ring
(5) Motion of two side by side vortex rings
(

(

(

(9) Motion of two linked vortex rings

(10) Motion of two vortex rings

(11) Oscillations of a straight filament

(12) Motion of a helical filament

(13) Oscillation of two trailing vortices

(14) Crow instability of two trailing vortices

(15) Crow instability of two trailing vortices (initially at most instable angle)

The other place to look for “parameters” is in the header files. The main compilation parameters are in
ezvorter.h. Many of the macro definitions in the other header files can be replaced with variables.



APPENDIX D: VALIDATION AGAINST EXACT SOLUTIONS AND LINEAR STABILITY
RESULTS

In this appendix we validate the code EZ-vortex against known solutions of the equations of motion for the
centerline and results of linear stability studies. We also give the values of the numerical parameters that give
converged numerical results for the different configurations under consideration. All following simulations use
the M1 de-singularized method of Knio and Klein with the explicit Adams-Bashforth scheme, there is no axial
flow (mg = 0) and the fluid is inviscid (v = 0). llere, the vortex core is similar and I' = 1. As the initial reduced
thickness is dy = 1 the small parameter ¢ is the initial thickness dg.

1. The perturbed circular vortex ring

The velocity of a circular vortex ring of radius R and thickness ¢ is [50,51]

r /. SR
V= Tog e 0, ~ 1965 | . DI
ulfrff(%o " +(> (D1)

For a similar core without axial velocity (7, = 0.442 and ', = 0. In figure 20 we plot the velocity V of the
vortex ring of radius R = 1 as a function of the initial thickness . Numerical results (crosses) are in excellent
agreement with the analytical result (solid line). The numerical parameters of the computation are given in
Table IX for the M1 method of Knio and Klein with the explicit Adams-Bashforth scheme (Run 1) or for the
Callegari and Ting equation with an implicit iteration (Run 2).

The period T' of a modal perturbation with azimuthal wavenumber n is

872 R?
T = = — )
P /[n2% — ge(m)ll(n? — 1)7 + g,(n)]

(D2)

where 1 = 47 RV/T and [g¢(n), g,(n)] are given in Margerit et al. [50]. In figure 21 we plot the period T’ for the
mode 3 of the perturbed vortex ring as a function of . Numerical results (crosses in Fig. 21 and Run 3 in Table
IX) are in excellent agreement with the analytical result (solid line). The initial amplitude of the perturbation
is po = 0.01 with the centerline in a plane. This period is found by using p, the amplitude part orthogonal
to the propagating direction x. It is given by py = abs[vZ2 + Y? — mean(v Z? + Y?)] where X = (X,Y,7)
and where mean is the spatial average on the filament at time ¢. The pulsation is then found with the slope
of the temporal function arccos[py /p1 (0)]. This slope does not depend on the point of abscisse s that is used.
In practice we do not choose any point and use the maximum of p; over the filament. It converges with all
numerical parameters (time step, number of points) and with decreasing initial amplitude pg.

TABLE 1X. Numerical parameters: closed vortices

Run np dt nsteps CPU time*(s)
Vortex Ring Velocity:M1 1 101 0.0016 7000 79.8
" O 2 " " " 186
Vortex Ring Period 3 257 0.0016 250 17
Vortex Ring Pair 4 101 0.00008125 7000 1200

*SGI R10000 work-station at 225MHz

The period at ¢ = 0.15 is not exactly on the curve. This small difference comes from finite ¢ effect. M1 Knio
and Klein method and Callegari and Ting equation has been proved to be equivalent in the asymptotic small
limit. When ¢ = 0.15 we notice (figure 22) a difference of the Biot-Savart results given by these two methods
whereas there is no difference for ¢ = 0.02. We believe that this difference is due to the next-order correction in
¢ which may no longer be neglected at ¢ = 0.15. All methods and stability equations are equivalent at leading
order but may be slightly different due to the effect of next-order correction.
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FIG. 21. Period T for the mode 3 of the perturbed vortex ring versus €. Same legend as in Fig. 20
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FIG. 22. Binormal velocity V at initial time for the mode 3 of the perturbed vortex ring e = 0.15 versus the node
number i of the filament. The solid line is the M1 Knio and Klein method and the dashed line is the Callegari and Ting
equation. Same parameters as in Fig. 21.
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2. Motion of a vortex ring pair

We consider two circular vortex rings in the same plane with same center and thickness §. Let I',, I';, R,
and R; denote the circulations and the radius of the outer and inner vortices. We introduce the dimensionless
parameters R = R;/R, and G = I';/T,. There is an exact stationary solution of the equation of motion (131)
provided that the following relation between (5 and R is satisfied [52]

E(k)/(1 — R) + K (k)/(1 + R) — 0.5 log(8Ro/6) + C, — 1+ Ciy]

“= ZEO/(—R) + K(B)/(1 + B) — 05 log3R:/0) + Co — 1+ (] /R (b4)

where k = 2v/R/(1+4 R). llere It and K are complete elliptic integrals of second and first kinds. The associated
velocity V' 1s

Fi (R S T 1 FO (1 o (1
= Trg, Bos(8R:/9) + Cy =1+ Cu] + o = [E(K)/(1 R)+ K(k)/(1+ R)]. (D4)
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FIG. 23. Velocity V of the vortex ring pair versus ¢ for R = 0.5 Same legend as in Fig. 20

In figure 23 we plot the velocity V' of the vortex ring pair as a function of ¢ for R = 0.5 and I'; = 1. Numerical
results (crosses in Fig. 23 and Run 4 in Table IX) are in excellent agreement with the analytical result (solid
line).

3. The perturbed straight filament

The period of rotation of a sinusoidal perturbation on a straight filament is

82

R ey s
Ck21/2 — v +1og(2/0k) + Cy — 1+ Cy|’

(D3)

where v = 0.577215, J is the core radius, I' is the circulation and k = 27/A is the wave number. This result
generalizes to an arbitrary vorticity profile the classical Kelvin [53] result for the bending modes of a Rankine
vortex for small wave-numbers. Kelvin obtained it by considering infinitesimal perturbations to a columnar
vortex; we obtained it by infinitesimal perturbations to the straight centerline in (B12).

In figure 24 we plot the period T for the wavelength A = 1.25 of the perturbed straight vortex filament as a
function of e. Numerical results (crosses in Fig. 24 and Run 5 in Table I) are in excellent agreement with the
analytical result (solid line). The initial amplitude of the perturbation is py = 0.01. This period is found by
using p, the amplitude part in the y direction. It is given by p, = abs(Y —Y') where X = (X,Y, Z) and where
Y is the spatial average on the filament at time ¢. The pulsation is then found with the slope of the temporal
function arccos[py/py (0)].
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