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Summary

As part of Task 2.2.3 of the C-Wake Project a cornputational code EZ-vortex is developecl for
the motion of slender vortex filarnents. We chose to implement a ,9lender Vortex Filament code
rather than a standard Vortex Filament one as ii gives fost computation whidi is a rêquirement
of our task. This code is useful to have fast computation of the far field wake. The integro-
diflerential equations governing the motion of the vortex centerlines are either the Callegari
and Ting equations, which are the leading order solution of a matched asymptotic analyses, or
equivalent forms of these equations. They include lar.ge axial velocity and non-similar profiles
in the voftical cores. The fluid may te viscous or inviscid. This code is validated both against
knorvn solutions of tlrese equations and results from linear stability analysis. The linear and
non-linear stages of perturbed two-vortex and four-vortex \ilakes have been computed and
tested.

The analysis of the NLR experimental results in LST and LLF wind tumrels has been com-
pleted to obtain the physical pa;r ameters needed as an input of our code. As there are no long
wavelength 3D efiects in these near- ànd mid- 6eld experimerüal results, the physical pil'ame-
ters of the last cross sections were extracted hy our analysis from the data files and are used
as an input of our code by giving the initial conditions for the temporal computation of the far
field. We have done the computations for configurations l, 2, 3r and 6 of NLR experimental
data: this is our par'ametric study of the NtR results.

It appears that our code needs to be coupled with near- and mid- field results to do a
parametric study with the wing parameters as an input. It is the only fast computation code
of the far field. It gives accurate results up to the trailing pair reconnection. It is a useful tool
to compute this part of the wake arrd it may be used to compare far field erperimental data
from catapult, tower tank or flight rnea.surements in real atmosphere. As a perspective a fast
engineering code could be developed from this code by adding 3D models of reconnection so
that to continue the computation tlrough the trailing pair reconnection.
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I. INTR,ODUCTION

The poteutial hazard related to the two-r'ortex aircrafT lvake induces separation distances betwccn aircralTs
and associated dclav at landing and take-off, l,hich contributes to the congestion of airports [1-:3]. Present
ICAO scparation rules in forces aLe conscrvative to minirnizc thc risk of a possible wake encounter. Separation
distances -bascd on aircraft weight- are empirical.

It was therefbre considered indispcnsablc to addrcss, within thc ith Framcu'ork Program of the E(.1, the Wake
\brtex Characterization and Control. The C-Wake proiect addresses the three followingaspects: i) thc physical
aspccts of a wake through wake charactcrization; ii) it produccs application guidclincs for the Duropean aircraft
industrv on how to control the wake vortex size and intensity; iii) it s1'nthesizes findings in order to arrir.c at a
validatcd method of predicting a Largc Ti'ansport Aircraft-Typc's wakc charactcristics rvith suffcient accuracy.

As to bcttcr understand the interest of our work in subtask 2.2.3 of this pro.ject, it rnaS'be interesting to
sketch a quick or.erview of the C-Wake organization. The C-Wake pro.ject consists of experimeutal work (!\,brk
Package 1 l\,VPl]), numcrical and theoretical work (\,\'P2) and a s1'nthesis task (\,VPi) as can be seen in Fig. 1.

!VP2 consists of numer:ical computation of the near field (Task 2.1), far field extrapolation of near field result
and prcdiction (Task 2.2) and thcorctical study of unsteady effects (Task 2.;3). 'Task 2.2 studics thc cffcct of
modificatlons to gcncric wing on far field wake (Subtask 2.2.1), the eflèct of design rnodifications to Airbus-type
aircraft wing on wake (Subtask2.2.2) and the configuration asscssmcnt b1'simplilied methods (Subtask 2.2.3),

trYc are the onl5'one in subtask 2.2.3 n'ho use a fully l1D method. Our goal is to studS'thc cffcct of a simplc
geotnetric configuration on near to far fleld wake b1' using 3D vortex filament rnethods. As it was defined in the
C-Wake initial Pro.ject [4] , our rvork is in four steps: i) adaptation of a vortcx filament mcthod, ii) acceleration
of the method, iii) r,alidation and ir') parametric stud1,. It lasts from the middle of N{arch 2000 to the end of
Februarv 2002.

C-Wake Co-ordinaiion Pânêl

wP1
F/,]'!fFld ExpE{',,mê,'r1êl

Ydake Vorlex Evoiutice
Ns.cr-!o-rili{i fiÊ!d
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wP2

FJ'5*,{E/d ff !'fi errl'âi d
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FIG. 1. C-Wake organisation
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\iortex methods la-8] are nurnerical methods of grcat intcrcst to study t'ortical flou,s. 'The discretization is of
the vorticitv field, rather than thc vclocity field, and is Lagrangian in nature. It consists of a collection of particlcs
(\brtex Particle methods [VP]) or filaments (\rortex Filament rncthods [VF]) which carr]'concentrations of
vorticity. The velocity field is rccor.crcd from the discretized vorticity field r.ia the Biot-Savart larv aud a
numerical smoothing parameter is introduced to desingularize the Biot-Savart line-integral kernel. 'Ihe vorticity
field is then evolved in time according to this velocrity field.

!\'e have implcmented [9] a s/ender vortex filament (SVF) codc based on asymptotic equations of motion
[10-12] derived by Callcgari and Ting from thc Navier-Stokes equations in the slenderness limit. For a closed
vortex let us brieflv introduce this equation which is thc heart of our work. A slender uorter ring of circulation



I is a fielc,l of vorticity *'hich is nolr zero only in the neighbourhoocl of a tliree-clirnensional curve (1, callecl the
t:enterline .l'his curve is clescribecl pararnetrit:all1.'by a function X = X(s,l) u.hich clenotes a point on the curve
as a fiutction of the parameter s, with s € [-r',n[, ancl t]re time l. For each point on the curve (1. the Frenet
fiame (t,rr,b) is cleflnecl rn'ith respectively the tangent, normal ancl binormal vectors. 'I'lie thicliness ô of the
rirrg is of orcler I and the other length scaies, for example the local turttature 1i or the length s of C are of the
satrre orcler I. Since the vortex is slencler, a small pararneter ; ( 1 is clefinecl as the ratio llL. 'l'he velocity
flelcl is trou dirnensionalizecl using l/I, all lengths using I, and the tirne using 1':7t'. 'I'he ecluation of motion
of a non-cirruiar'sletrder vortex ring has been derivecl b1,- CT from the Navier-Stoltes eclr-rations using a matchecl
as1'tnptotic expansion in a, ,\t leadiug orcler the follow-ing equation lr,as obtainecl

dxl.)t [t)xldt.t]t(s,l) = Q(r,l)* Ii(s,t)[ Inaf lnS(l)- 1+C'.,(1)+C',,,(l)]b(s,l)/.1.r, (1)

*'here Q(s,l) is an integral given b-v-. Q(s,1) : A(s,l) [A(s,1) .t(s,t)]t(s,t) rvith

A(s.lt= | i ltt..+r'.t)x(x(s,/) x(s I.r/,t))_ À(s.,)h(s./)'1,-'.,,-l,oJa(sfs,.,)lrxt,'ffi-7l,lf.-'171|,],t',
: r 

...t*,,
Ilere a(s,t\ = l)Xldsl and À(s,s',r) J o("-,t)ds*. In ecluation (1) C,,(1) ancl C',,,(l) are krorvn functioris

(see [10]) clepencling on the inner.tr,,.,t.,.L ofthe vortex at leaclingorder ina.
I-.sing tlie Callegari ancl Ting's ecluation I(lein and I(nio [11] have sho*rr ihat it is not correcrt to comprite a

vortical flows cotnposecl of several thin vortex filaments by a standarcl vortex fllament (\'F) methocl rvith onll.'
one nunterical filarnent per section ofthe thin vortex filarnents (the so callecl thin-tube moclel): urore than one
nurnerical filarnent per section is needed to insure the convergence of the numerical scherne, Ilowever, as it
w-ould save cotrtputation time to have only one numerical fllarnent per section, Iilein and Iinio Ill] proposecl
a cnre: they have show-n hox' to acl.just the numerical desingularization parameter (the so callecl thin-tube
thickness) to real thicltness of the slender vortex fllaments so that tiie methocl gives r:orrect resnlts. ,,\s the
correc:tecl thin-tube uroclel is still stiffto be solved numerically Iinio ancl Iilein [12] removecl this stiffness in the
irnpr'ot'ed thin tube models that the1.' proposed.

1\'e have aclaptecl this nulr erical scherne for open vortex filarnents lvhicli are perioclic u:ith a cjraracteristic
t'avelength atrd u'e have itnplemented it in a code named EZ-Vortex. The fluicl rna1.'be viscous or invisc:icl;
the relative veloc:ity field (i.e. velocity field minus fllament velocity) is axis1.'rnmetric ancl rna1.'be similar (1.c.
Gaussian) or not (it c:au be a Rankine vortex or any axisymrnetric vorticity profile). T'he evolution of the core
sttuc:tute (diffusion ancl stretching) is talien into account in the asymptotic equation and so in the irnplementecl
code.

Àrnong the ;}D vortex methocls u'e have chosen to irnplernent a Slencler Yortex Filament methocl becanse
it is adapted to solve vortical flows composed of several thin vortex filaments as is a ri'ake vortex in the far
field. Â brief overvien'of the different vortex methocls and of iheir characteristics are gilen in Appenclix A. Â
contplete clescription of the slender vortex governing ecluations is given in '\ppenclix B. The implementecl cocle
EZ-vortex provicles a useful and /asf tool for the sirnulation of aircraft wakes in the far flelcl. ,\s we onl1.' consicler
computations in the far field n,e direct the reaclers interested by three-dimensionai vortex filament nrethocl in
tlre trear field to the paper of Ehret et al. ll3l. The thickness of the vortex core founcl in the wincl tunne]
experitneuts [14] confirms the slenderness assumption: the vortex core thickness over the clistance of the trailing
vortices is found to be of a fe*- percents. \\ie have irnplernented [9] a slender vortex filarnent rnethod because the
cost of cornputation is smaller *'ith this method than with \rrrtex Blob Nlethods or \iortex Filament l,Iethocls
[1o] . T'his method is fast as it is based on the equation of rnotion obtained frorn an asy-rnptotic expansion of the
Navier-Stokes equations in terms of the srnall thicliness of these vortices. This method takes aclvantages of a

great theoretical work [10-12] in *-hich lots of analytical calculus rn'ere carriecl out so as to take advantage of the
slenderness in order to obtain a sirnplification of the Navier-Stokes equations and to avoid the stiffness of these
equations *-hich is inherent in this limit. Â fully resolved 3D computation *'ith a standard \iortex Filament
N{ethod w-ould have the sarne cornputational cost as a DNS of the Navier-Stokes equations. It would be outsicle
of the sirnplifled and fast cornputation recluirernent of task 2.2.3. In literature fully resolvecl cornputations with
3D vortex Nlethods of the same cost as LDS are under consideration by developing sub-grid rloclels aclapted for
vortex methods [16].

Section II of ihis report explain the implernentation of the EZ-Vortex code. \\'e first implernented tire Cal-
legari and Ting equation of motion for closed and open fllarnent with Gaussiarr core. Then q'e have extencled
the slender-vortex-fllarnent code EZ-Vortex to non-Gaussian vorticity in the vortex core and we have also im-
plemeuted the [,Il-method of I(nio and K]ein [12] because the line integral of this metlioci is simple to cornpute
and because the time stepping can be explicit and allow-s to use an Adarns-Rasliforth time stepping r'hich is
seconcl order. Spatial clerivatives can also been compnted spec:trally for closed and open filarnents. In this cocle



\,ïe use a cha'n'ing of the filarnent at run tirue t,ith the OpenGL librarl'' on a SCII rvorltstation. The philosopiry o1

EZ-Vortex cocle is to lteep prograrns as sirnple as possible ancl to provicle clocntlentation both bl'' u'a1'of a text

[17] ancl of cronments within the r:ocle itself. Àppenclix C gives the têatures of tiris cocle: it is tire clocutneutation
of this cocle [17] . \\'e r-hose to har.e physir:al parameters in clirnensioual fbrm as au iuput of EZ-Vortex. ln t]ris
r,r'ay' EZ-Vortex can perform both climensional or non-climelrsional runs.

In section III re give the valiclation of tliis this cocle lbr open vortex fllaments against the linear stability
analysis of a two-vortex aud four-vortex aircraft 'w'alre configurations. The ampliflc:ation rate of unstable mocles

of the Crow instabilit-v- for t'rvo trailing vortices have been c'hec'kecl ancl also tlie periocl of osr-i]lations of stable
modes. For the four-vortex *'alte the base flow is the stationary four vortices. 'Ihe rate of growth artcl the
u'avelength of the instabilitl.'that rve obtainecl corllpare favorably witli the ones of Fabre and .Tac:c1uin [18,19]
lr'ho obtainecl their results from a linear stability analJ'sis. Rennich ancl Lele [20] liave shomr that the clestructiou
of aircraft wake vortic-es can be ac-c-eleratecl by aclcling tu,o flap-vortices betu'een the trailing-eclge vortices. Tlieir
results were obtainecl botli front a Nar.ier-Stolies spectral cocle ancl from a sirnpi e vortex fllament c-ocle. Our c'ocle

allows us to improve the previous results of Rennich ancl Lele [20]. Âppenctix D gives the valiclation lbr closecl

vortex fllaments and for other linear stabilitl' results. \\'e analyze the iufluence of all ilte uutneric:al paratleters
to be sure to have cotrvergecl results. In EZ-Vortex both viscosity- ar:cl vortex stretc-hing are takeu itrto accouut.
The vortex stretching is not local as it is in the slenclerness limit [21,22] ancl no axial core variatiotrs are taken
into account because it taltes place on a ver1.'fast time [22]. For other Iielvin-n'ave phenotnena t]re reacler i's

directed to the recent overview of N'L Rossi [23]. Tlte description of tire slencler vortex methocl ancl the valiclatiou
of EZ-vortex with stability results have been u'ritten in a paper [9] t'liich has beett subrnitted.

In section IV lr'e give a brief overvierv of LST and LLI rvind tururel results given b1'' NLR.'Ihese experimental
results are for a generic rnodel: the SWItr{ moclel geometry, ancl consist in 6 model configurations. The LST
results are closer to the q'ing than the LLf one. \Ve have to nse these clata as initial conclitions of our nurneric:al
computations. hi September 2001 rve got from NLR a set of 6 Cf)-Roms [24] u'ith LST results ancl the assoc:iatecl

repori [1.1]. There are no LLF results in these CDs nor rake clata u,ith LST. Cotrtrary to ralte clata, sotne PI\i
results r-ith LST are unable to give the velocity field insicle the vortic'es. \'Ioreover rake clata also give the axial
velocity component. In the beginning of Septernber 2001 we got from NLR 1 CD-Rorn [2o] u'iih all results: LST
(PI\i and Rake) ancl LLF; ancl the associatecl report [26] . In these net.clata flles t]re axial vortic'ity courpottetrt
Iias already been corlputed. For rnost files the r,e1ocit1' fielcl n.hich rvas in several clata flles in the previous CDs
hal'e beetr interpolated on a gricl for tlie n'ltole l'ake clomain (behind the left ancl right hancl t'ings). These flles
rnake the experirnental results far easier to hanclle. -,\ correction u.as clone to the velocitl'- fielcl in an last report

[27]. In order to generate the ilitiai conclitions of the EZ-vortex cocle frorn these experirnental clata li'e ueecl to
have a physical analysis ofthe flow, i.e. to have the ph1-sical paranreters: nurnber of rortites, their circulation,
position and thichness. I-,nfortunatel-v- most of these pararneters (incliviclual circulation ancl t]rickuess) are not
given in the NLR analysis repori [26]. ,\s u,e need it u'e have completed the analS-sis of NLB b1'cornputing
these physical parameters for the clifièrent experimental data files. An overvien' of this anal1''sis is given in this
section I\r. As can be seen from clata files of NLR, there is no long rvavelength .}D effect in these experinletlts.
There is first a rnerging of for fllaments li'ith either a 2f) rnerging or a short wavelenght instabilit-v- rnergiug and
then a 2D rlotion of tlie tt.o trailing vortices. ,\s our cocle captures 3D curvature long wavelength effect, it is a

useful tools to extrapolate these experirnental rnid flelcl to the far fielcl b1.- using the last cross section velocity
field. The analysis of the different last cross sections is carried out ancl rr'e give in this ser:tion IV tlie values of
the phy'sical parameters needed for the parametric study of next section.

In section V w-e carried out the computations of the clifferent cases obtaitred in section IV. lVe then conclude
in section VI and give perspec'tives of this *'ork and of the EZ-vortex cocle vrhic:ir has been provecl to be of great
use for far fielcl computations.

Âs w-as planned in the C-Wake initial Project [4], our w-ork is in four steps: i) aclaptation of a vortex filament
method,ii) acceleration of the rnethod, iii) valiclation and iv) parametric studl'u'ith the use of NLR wincl tunnel
experimental results on a generic rnodel: the SWIù'I model. Sections I and II are devoted to the two first steps

i) and ii): here the acceleration of the rnethod *'as obtained by the choice of the implementation of a Slender
Vbrtex X,{ethod. In the c-hoice of a standard \iortex \,Iethocl the acceleration p}rase 'r,-oulcl have corresponded
to the implementation of a fast Poisson solver or of other tricks to ac:celerate the computatiou. Sectiotrs III is

devoted to the third steps iii) and sections I\i and \i to the parametric stucly step iv).

II. IMPLEMENTATION OF EZ.VORTEX: A SLENDER VOR-TEX FILAMENT CODE

The EZ-vortex code [17] is the numerical implementationof the Callegari and Ting equation (see Eqs. (81),
(82), (83) , and (Bi) in Âppenclix B) for closed filatrents and of the associated versions for open filarnetrts (see

Eq. (812) in Âppenclix B). The philosophl,-of the cocle is to keep prograrls as sirnple as possible and to provicle



clot-utneutation both bv way of a text f iTl alcl c:omments u'ithin the code itself. It will be available through the
rl'orlcl-u'icle u'eb ancl is aclaptecl froni the cocle EZ-Scroll clevelopecl b1,- Dw-ight Barkley for simulating scroll u'aves
in excitable meclia [28,29]. This pac:kage uses OpenCiL for 3D renclering or the X{esa librarl'- (public domaitr
implernentation of most OpenGL routines). It sliould be possible to run on virtually any machine supporting
\. Setiing rllacros of the (.1-preprocessor (clefinecl in the main heacler file) to 0 or I allows to irave a conditional
compilationof the cocle ancl to have a uniclue source-cocle nith clifferent equations of rnotion and u'ith diffetent
spatial ancl ternporal numerical cliscretizations.

The lthysical parameters in the simulation are the initial stretchecl core raclius ô-s, the initial axial flux rzs,
tlre c'irc-ulation l, the aspec:t ratio parameter e : 6lL, ancl the stretched viscosity u : ul€2 of ihe fluid. The
nurnerical parameters for the sirnulation are the number np of spatial points (nodes) on each filarnent, the time
step dt, the number nsteps of tirne steps ancl nb the number of perioclic boxes for open filaments (see Fig.2).

A. Spatial discretization

The cnrve X is discretizecl by putting np points on tlie centeriine, i.e. by an nniform discretization of the
interval s € [-n,r[.

1. De riuatiues

First-derivative at = i)Xlds ancl second-clerivative lib: 6A16s x i)2xf dsz llt)Xl t)sl3 are approxitnated
by second orcler centerecl clifferences or spectrally computed via a Fast Fourier Tratrsfortn (FFT). For periodic
open filaments of period Â(l) in the c* direction [X(s + 2tr,t) : _X(s,T) * Â(f)c"] t]re follow-ing periodic
fntrction X1t,t1 : X(s,t) - À(t)s/(2n)c, is clefirrecl. Âs it satisfie. X1" + 2r,t) - X1t,t) its clerivatives can
be-spectralll-cornputed via a FFT as for tlie closecl filament. The flrst-derivative is then given by i)Xlds:
aXltls +,\(t)/(2r)e* ancl the seconcl-clerivative b1 d2I.lds2 : A2*la)s2.

2. Integrals

The trapezoidal rule is used to compute any integral part of the equation of motion. In case of a periodic
open fllament we talte advantage of the perioclicitl,' and advance in time only a part of the filarnent (see Fig.2)
corresponding to a period A(/) (or an integer nurnber of periods). The self-induction at point X(s,{) on this
part of the filarnent is founcl by aclding t*'o contributions (see Fig.2). The first one is the self-incluction of a bit
of filament in a box of length Â (1) centered on X(s, I ) . The second is the induction of tlie remaining part of the
open fllament in nb boxes of lengtli,\(1) from both sides of the central box. The self-induction part is obtained
*'ith one of the equations (Bl), (82), (Blf ) or (Bô) for a closed fllarnent and the remaining part is obtained n-ith
the mutual incluction velocitl.'forrnnla (811) as if it s.ere comitrg frorn other filaments.

[.eft Box 2 Left Box I Cenrral box Right Box I Right Box 2

Periodic part

FIG. 2. Periodic part of the filament, central box around X(s. t) and left and right side boxes.

The spatial discretization can be checked at initial time by testing the convergence of the Biot-Savart velocity
computation *-ith the number of points and with the number of periodic boxes for open filarnents.



B. Ternporal discrctizatiorr

'fhe time stepping of the equation of rnotion is either an explicit foru,arcl lJuler first-orcler scherne, an irnplicit
baclt'rvarcl lluler flrst-orcler sc:hente u'ith an iterative sequel tliat converges to the solution of tlie non-litiear
algebrair: svsteru, or an r\clarns-Rashforth seconcl-order expiicit sc:heme. Explicit schet-ues c'att also be dotie on

ltlac:e, i.e . r,r.ithout a temporar_v- variable for the c:oorclinate positions for the trocles of the filarnent.
Dxplicit schernes for ecluations with a local 1i. b terrn [Callegari ancl Ting (R1) or LIÀ (82)] are ahtays unstable

[.]0] ancl are conclitionally stable for the simple cle-singularizecl rnethocl (83) or for the X,Il cle-singularized method
(Ra) of I(nio ancl I(lein. ,\n,\clarns-Bashforth seconcl-orcler explicit schente cau be usecl ri,ith tliese later methods.
l,Ioreover (83) ancl (Ba) neecl not to compute tlie local 1ib term ancl are also easier to itnplement bec'ause their
non-local integral term is a sirnpleexpression whereas in tlie Callegari ancl'I'ing equation (fl1) the integrancl of
the integral term A is a subtraction of two terms ancl neecls the computationof the /{b term ancl of the integral
clistanc'e function À(s,sr,t). 'I'he N[1 cie-singularizecl method of I(nio ancl li]ein (Bô) is more aclvantageous
tlian tiie sirnple de-singularized rnethod (8.1) because c:ontrary to this later rnethocl it is not stiff in the small
thickness pararneter ô : as Lran Lre seen from ciirect nnmerical cornputation the simple cle-singularizecl metliocl
(13;i) neecls much more mrrnber of points to converge than tlie X,{1 cle-singularized method of Iinio ancl I(lein.
It is interesting to have implemented all tliese different methocls in orcler to cotnpare their cliflerent aclvatttages
frorl clirect numerical computation and to avoicl any implernenting mistake by c:liec:king their convergenc'e to
the same result. 'fhe corlvergence of every simulation is assessecl by increasing the trutnber of points ancl b5r

clecreasing tlie tirne step.

C. Closed and opeu filaruerrt storage

ln this subsection *'e expiain the choices that we clid to irlplement the nurnerical sc:hernes. It is of ittterest for
anyone u,ho u'oulcl like to do such an irnplernentation or go through the lines of the EZ-vortex code. Cartesian
coorclinates (r, y, r) of nocles rl on the fllarnent j are successively stored in a pointer u ancl are managed by three
rraL:ros Ux(i,j), UV(i,j), Uz(i,j), where Ux(i,j) is the coorclinate r of the nocle tl on the filarrent j. The same kild
of pointer (u-s, u ss, ...) ancl uracros are usecl for the first and seconcl clerivatives, for a ancl for tlie velor:ity
components. Tlie inclex ri ranges from 0 to np*1 and the inclex j from 0 to nf - 1, rvirere np and nf are respectively
the nurnber of trocles and of fllarnents. Points 0 ancl np*1 are addecl-flctitious points rr'hich may be of use.

For a c:losecl fllament the point of inclex np is at the same location as the point of inclex 1, whereas for atr
open fllament the point of index np is the translatecl point [w-ith period À(/)] of the point of index 1. In the
sper:tralcomputationoftheclerivativestheFFTroutineusesthepointsfromi:1tof:np-laudtheindex
np 1 is 256. Forclosedfilamentslr,.efiucltheinducedvelocityonnodes f= 1 tof= np-1 (respectively f: np

for open fllament) and then move all these points,
For open fllaments the self-incluced veiocity at any'point X(s,l) of index f is found as displayed in Fig.2:

terrrporarl,' pointers (ux-tmp, uy-tmp, uz tmp) are introducecl to store part of the filament in tlte central box

aronnd tlris point i 'çr'hich is storecl at t]re central index (np + I\ll of these pointers (tlie nutnber of points np

is an oclcl nnmber). ilhe same ternporary'pointers are also used for closed filametrts. With these temporary
pointers the same procedure is then usecl to compute the velocity r,l.hatever point is under consideratiott. The
procedure to fill these pointers is cliflerent wliether the fllament is closed or open because indices have to be

managed differently. For open filarnents the induced velocity of the nb copies on the left and right boxes is
aclcled to the self-inducecl velocity of tlie central part.

D. Description of EZ-Vortex

The principal features of the code EZ-Vortex, the way to run it and to use it is given in the EZ-Vortex
clocumentation [17] . ]bu can flnd this docutlentation in Âppendix C.

III. VALIDATION OF EZ-VORTEX

Âppenclix D gives the validation for closecl vortex fllaments and for other linear stability results. In this
section tlie EZ-vortex cocle is validatecl against linear stability results of a two and four aircraft w-ake. \\'e also

anall'se the influence of all the mrmerical pararneters to be sure to have converged results.



À. Study of a two-vortex aircraft wake

In this subsection the EZ-vortex cocle is used to stucly a tw-o-vortex airc:raft wake whir:h r:onsists in a pair
of contra-rotating vortex fllaments. It gives a validation of the code. Âll follo*'ing sir.unlations use the NI1

de-singularized rnethod of Iinio and l(lein with the explicit Âdarns-Bashforth sc:heme ancl t'ith l: *1. There
is no axial flow (m6 : 0) and the fluicl is inviscid (u = 0). Ilere, the vortex core is a simi/nr t,orfer: profile.
The initial reduced thickness is ô-6 = 1 and so the srnall pararneter e is the initial tliic:ltness ô0. The velocit-v-

of tlre contra-rotating vortex fllament pair of circ:ulation al is l' : ll2rl, rnhere I is the clistanc'e between
the vortices. \&'e checlted that the cocle reproduces this velocity (data not shown). The stability cliagrams catr
be cleduced frorn the study of Crow [31] and are recalled in flgure 3. Ilere, we chose to clisplal'- the n'avelength
instead of the wavenumber and to plot the diagrarns as a function of the initial thicltness e rather tlian the
ad-hoc cut-off length of Crow [31]. These diagralns are in dimensionless fonn (I : 1 and I : t1.)

4

^3
2

1

Stable

0.3 o.4
a€

FIG. 3. Stabilit], diagmm for symmetric (left) and antisl,mmetric (right) modes of a similar vortex pair rvithout axial
flow: Â is the rvavelength ald e is the initial thickness.

TABLE I- Numerical parameters: open vortices

o.20.1

\ \ Unstable

Stable 
\

/

drnpRrrn nb nsteps CPU time-(s)
Straight filarnent
Vortex pair period
\brtex pair growth rate

tr Non Linear (NL) regime
Four vortices S1 mode

l/ NL regime
Four vortices 51 or A mode

// NL regime

5

6

7

8

9
l0
11

t2

1.25

I.25

10.21
0.8976

7.85

257
257
101

61
ll

101

btL,

250

800

7950
250

872
250
1744

330
516
240

2-o2O

264
930
306

2160

0.00026
0.00026
0.0019

0.0019

0.0019
ll

8
8
8

20

I

*SGI R10000 work-station at 225MHz

The period of the syrnrnetric stable modes is [31]

4tr2 L2 (2\T- l'

where È =2rl1' is the wavenumber and

Ilere, Iio and I{1
given b-v- [31]

ÿ = k2 L2 Ko(kL) + kLKlkL),
y = kLI{1(kL),

':, - t_t * log 3 *, p - ^t * c, + c*)12.-ôfr

are modified Bessel functions of the second kind. The period of the antisymmetric rnodes is

t0
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Figure 4 show-s the period 7 for tlie wavelength À : l .2o of the perturbed contra-rotating filaments (symmetric
stable modes) as a function of tlie initial thickness e . Numerical results (crosses in Fig.4 ancl Run 6 in Table
I) are in excellent agreement witli the analytic:al result (solicl line). This period is found in the same wa1'as in
Âppendix D.3.

FIG. 4. Period ? for the wavelength r\ : 1.25 of the perturbed contra-rotatinpç vortex pair (symmetric stable modes)
versus its initial thickness e. The solicl line is from tlie analytical result and crosses fi'orn numerical computation (Run 6
in T:a.ble I).

The growth rate B of the symmetric unstable rnocles is [31]

it=1#@
The growing perturbations are planar stancling waves x.ith planes flxed at angle d to the horizontal [31]:

9: arctarr( t

(3)

(.1 )

(5)

0.1

oP,,,

0.

ï o.os 0.1 0.15 0.2

-F-IG. 5. Growth rate B*o, (l"ft) :..1 planar angle d,.". (right) versus the initial tiickness e for the most unstable
wavelength of the perturbed contra-rotating vorterpair (s1'nrmetric unstable mode). Same legend as in Fig. 4.

Figure i displays the growth rate iJmM and the planar angle 0*o, for the most unstable w-avelength r\(€)
(s1'mmetric unstable mode) of the perturbed contra-rotating vortex pair as a function of the initial thickness e.

Numerical results (crosses in Fig. 5 and Run 7 in Table I) are in excellent agreernent w-itli the analytical results
(solid line). The initial amplitucle of the perturbation is ps : 0.001 and the initial planar angle is cleduced
from (5). It has been checked that the planar angle of the mode did not change during the cornputation:
reported crosses are the value of this angle at the end of the computation. The arnplitude p(s,l) is given by

p2(s,t):lZ(s,t)-Z(t))' +[Y(s,r)-0.5]'*,hereX=(X,]', Z)ardw.lereZ(l) isthespatialaverageonthe

11



filament at time l. The growth ratc is given by thc slope of thc temporal function log[p(s,l)/p(0)] . It convergcs
with all numerical parameters (time step, number of points and number of boxes) and with decreasing initial
amplitude po. \&ith an axial flux (rns/I' I 0) the e axis of the previous flgures is multiplied by exp(-2[rno/f]').
\\'e checked that analytical and numcrical results also agrce for m6/l = 0.6.

Pigure 6 displays the evolution of the Crow instability of the most unstable rnode in the non-linear regime
(Run 8 in Table I). For sake ofclarity the curve ofthe centerline is represented by a tube with an arbitrary
core radius.

t=0 E=0.2945

FIG. 6. \brtex Filament Simulati,rn of the non-linear instability regime of the most nnstable mode Â : 10.21 for the
contra-rotating vortex pair. Initial amplitude p : 0.05, initial thickness e : 0.02 and initial angle d(t: 0) : a7.63(de8).

Viscous and non-similar effects are implemented in EZ-vortex but could not be validated by lack of known
analytical results. The linear growth ratc rJ found from thc first tiure steps as before is almost constant with
theviscousparameter u=ufez till ,-4.Themaximumamplitudeonthefilamentp(t) asafunctionof time
is weakly alïected by the viscosity (u = t1 in the non-linear regime. The simulations of the Rankine or the
uitch-hat profiles (see Appendix B) gir.e almost the same maximum amplitude p(t) evolution as for a similar
core.

B. Study of a four-vortex aircraft wake

In this subsection the EZ-vortex code is used to study a four-vortex aircraft wake. It gives a last validation of
the code. As in the previous section all following simulations use the N{1 de-singularized method of Knio aud
Klein with the explicit Adams-Bashforth scheme, there is no axial florv (m6 : 0) and the fluid is inviscid (v : 0).
Here, the vortex core is a llankine proflle. The two trailing vortex pairs have the same axis of symmetry. Let us
denote ['r, I';, Lr, Lt, d,(t = 0) and d;(t = 0) the circu]ations, the distances and thc thickness of thc outer and
inner vortex pairs. lVe introduce the dimensionless parameters -B = Lif Lo and G = f tlf ,. The initial outer
reduced thickness is ao(l: 0) = 1 and so the small parameter e is the initial thickness of the outer pair.

TÀBLtr II. Four-vortex modes: Iinear stability (th.) and EZ-vortex (nrrm.) results at e:0.1

rr (num. Rurr 9 in Table I)
Long-wave 51 mode (th.) [18].

lr (num. Run 11 in Table I)
Long-wave A mode (th.) [18].

il 2.94
7.85

7 a:

1.55
1.56
1.469
1.511

11 1.04
1.1;.45
145.68
116.90
118.72

130.20
103.85
103.73
167.03
166.39

52.8
o 7')

9.80
9.58
9.73// (num- Rrrn It in Table I) ll

*results given b1. l). Fabre.

There is an exact stationary solution of the equation of motion (812) provided that the following relation
betwcen G and r1 is satisfied [20]

^ 3.H + rir
- 3J?2+1

(6)

E=0.152

,til

The associatcd velocity I,'is

1.)



fi_+21, 1 
(7)' ='znh- Ttkr-R,'

We checked that the EZ-vortex code reproduces this velocity for the ratio -R = 0.14 (associated G is -0.4.) used
by Fabre and Jacquin [18].

As for the contra-rotating vortex pair sinusoidal unstable modes exist. The growing perturbations are
planar with planes fixed at angles d, (outer trailing pair) and d; (inner trailing pair) with respect to the
horizontal [18]. Let p - ptf po be the ratio of the amplitudes. Fabre and Jacquin [18] _ca.rried out the
linea.r stability study of this wake and gave results for .R = 0.14 (G - -0.4), e = 0.1, do(t = 0) : 1,

di(f = 0) = 0.5, l, = 1 and Lo = I. The growth rates and the associated modes of the most amplified
51 mode Â = 0.8976 and for the long-wave 51 and A modes À = 7.85 are given in Table II. We have
reproduced these results with the EZ-vortex code by starting from a perturbation amplitude p6 = 0.001.

TABLE III. Four-vortex modes: linear stability (th.) ât e : 0.02.

0,(deg) d; (deg) a: p;l p"

Most ampüfied 51 mode (th.)'
Long-wave 51 mode (th.)-
Long-wave A mode (th.)*

1.2 566

7.85
7.85

3.O7

7.62
'I .40

82.81
140.36
1',I0.13

132.53
104.35
167.54

48.5
10.00
9.35

'results given by D. Fabre.

The growth rate B is obtained from the slopes of the temporal functions logfp*(s, t) I p"$)l with the amplitudes
po(s,t) and p1 (s,I) measured by

pZG,t) = lz,(s,t) - z,(t))' + [%1r,t) -ÿ,(t))' ,

p? (',t) = lzuls,t) - Zr(t))' + [r,1', t; * ÿ,(t))' , (8)

where Xo = (Xo,Yo,Zo) and Z"(t) and Y"(t) are the spatial averages on the filament d = o or r'at time
t. We start with the linear stability results and carry out several computations starting with ps = 0.001 and
with (do, 0i, g = pil pr) from the final values of previous computation. It converges to fixed values repotted in
Table IL We have ca"rried out the same comparison for e = 0.02 and shown that the small diflerence between
numerical and linear stability results disappears (Table III). This difference is thus due to finite e effects. Figure
7 displays the evolution of these modes in the non-liuear regime. The numerical parameters of the computation
a,re given in Table I (Runs 10 and 12).

Nlost amplified 51 mode À = 0.8976.

t=0
Long-wave 51 mode Â = 7.85.

E=2.375 t=3 .135

t=0 t=0.9500 t=l.3300

4 t\

lllt
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t=0
Long-wave A mode ,\ = 7.8i.

L=2 .37 5

FIG. 7. \brtex Filament Simulation of the non-linear instability regime of tlpical modes for the four-vortex wa.ke.

In'itial amplitude p6 :0.001. and initial thickness e :0.1. (The r.isua'lization of the filaments uscs equal core radirrs er.en

if the computation uses unequal sizes.)

IV. A.NALYSE OF WIND TUNNEL DATA

In this section rtre give a brief overview of the NLH. experiments and rcsults in wind tunnel on a generic modcl:
thc SIVIN{ model. !\'e thcn complete the data analysis of NLll, to flnd the physical paràmeters that we need

as an input (initial condition) of our EZ-vortex cornputation. lVe first cxplain how we do the analysis and then
give the parameters of the diflerent runs to be donc.

A. SWIM geometry and NLR. experiments in LST and LLF wind tunnels

These experimental results are tbr a generic: model: the SIVINI rnodel geometrl', and consist in 6 modcl
configurations. Fig. 8 gives the photos of these 6

conflgurations and Fig. 9 gir.es the dir.nension of the wing and the lateral position of the spoiler elements.

Conf. 1

Part span flap

Spoiler near flap tip

Conf. 2

Spoiler ô, = 20 behind flap tip

Conf. 5

Eull span flap

FIG. 8. The 6 model conflgurations [25]

Conf. 3

Spoiler d-.- = 20 near flap tip

Conf. 6

f)lean wing
Conf. 4

ô-, = 20

t=3 .135

L4



c0rifig..3 ?ürtfi-(t.2&4

{r*n! side

,l ai spailer

i)int:r';,sll-rr;s ir; rrrrrr

FIG. 9. \\/ing of the srvini model and lateral position of the spoiler elements [14]

The coorclinaie frame is ("r,y,:) rn'here r ancl; are respectively tlie dowrr stream and the vertical clirections.
The associatecl velocitl' components are (i..t, 1', 11r). Tlie lr.ing span is â : 0.6 m and the mean axial velocity
Lio : 60 nr/s. Fig. 10 gives the planning of the different tests in LST ancl LLf rvincl tunnels for the different
c:onfigurations ancl cross sections. hrstmmentation is either PIY or J-hole rake. 'Ihe J-hole rake allows to have
the axial cornponent of velocitl,'.

l'hlse I and phasr 2 tr:sts in the l.)l\W-LST (phase I in itrlir:s)

ï positian lflotlel co figuration

\it) Irn l
I

itr-{r.t} Jtr: I

:
((r-(l.i) ilr.t i

,l

( rt-{r () rle t I

+
i lr-f .5 ,lcrr I

.-\

in--1.5 J.r:l)

6
ttr,-ll ilcrt

t}.75 l') -l-5 PI' PII' Nt' Ptr' rf I- rII'
t.:,i {1.7-; I{irkÈ.['lV [{ak.'rPIV [{Jkr,'[)lV ltake,'Pl\j

1.50 r.50 I'l \j l,l\,' lrlv I,IV

5.ti() i.00 lùiÂ'r,'['lV /lrrÀ'ur'PlV Arr*ril'lV Rtùe .Rirlri'l'lV r?tlrt.'

7.5t) 1.50 PIV

tf).16 6.I0 Rake,'['lV Rake,'['lV ltâke,'Ill\,' llakeri lllV

Tests in thc DNW*LI-F ç'ind tunnel

Iti.t{, 6. l{) Pt\j PIV PIV PIV

l_i._i3 i).:0 I"'IV PIV PtV PIV

:e.tti I?.f){) PI\,' PIV F'IV PIV

FIG. 10. N'Iain florv-field tests in LST and LLF wincl tunnels [14]
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B. Results and data analysis from NLR

The NLR CD-Rom [25] gives all the results for LST (PIV and Rake) and LLF tests. It consists of diffcrent
ascii data flles. They give the velocity components (over Us) and the computed axial vorticity componcnt
on interpolated grids that cover all the flow field behiud thc wing. In these files therc is a colutnn fbr each

component on the grid. The number of grid points in .y and z directions changes from one file to one other
and it is not given. In LST mcasurement PI\'- results are unablc to give the velocity field inside the strongest
vorticcs. For each data file the configuration nurnber and the cross section position r f b can be found from Table
3a to Table 3f in the NLR report [26]. For example Fig. 11 givcs the velocity and the vorticitv fields that we
plot with [,{atlab from the dat fi]e rakc0!022.dat : rake data results tbr configuration 1 at rfb = i.

rô

-0.3

-o.4.

-0.5

-0.6

-04 -03 -02 -0.1 g o, 0.2 0.3 04

FIG. 11. \êlocitl'fielcl ancl axiai r.orticity- contourplot for configuration 1 at tfb:5 (frle rakt0210)2.datl25))

In ordcr to gcnerate the initial conditions of the EZ-vortex code from these experimental data rve need to
have a physical analysis of the flow, i.c. to have the ph1'sical parameters: number of uorticcs. their circulatiort,
position and thickness. The result of the data analysis of NLR can be lbund from Table 3a to Table 3f in the
NLR, report [26]. \,\'e can find from these tables the position of vortices and thc total circulation on thc lcft and
right hand sidc of the wing. This c:irculation is tbund both bl'a sutface integral of thc r.orticitl'field (f ,) and
a line integral of the velocit5'field (f.). For cxample tbr the run of Fig. 11 it gives: l, = -4.125 m2 f s and
t', = -4.125 m2f s or, the left hand rving and f-- :3.937 m2/s and f. :11.95;i m'2f s or, the left hand wing.
Lnfortunatell'the number of r.ortices, their individual c'irculation and their core thickness are not given in these
Tables. As we need it we have completed the analS'sis of NLII b5' computing these ph1'sical parameters for the
different experimental data flles.

C. Our analysis of the data ffles

\\'e will present our analysis on the sanc run as in Fig. 11. \tr'c flrst find the center of the each vortex from
Fig. 11 and select a circular dornain around its center (Fig. t2).

\\'e then intcrpolatc thc vorticity field on a polar grid around this c:ircular domain and do the angular a\rcrage

of this field to obtain the radial velocit-v proflle of vorticit5' (dot points in Fig. 1i3). As a Gaussian profilc only
depends on the circulation I and core thickness d (see Appendix B), these two parametcrs can been found lrorn
an optimization routine to find the Gaussian profile that bcst fits the experimental onc in the least square scnse

(Fig. 1:l). \tr'e use usual Nlatlab routines to develop this analvzer of the data liles and made this program as

automatic as possible. In the same way the arnplitude of non-Gaussian tnomeuts (in the Laguerre seties scnsc:

see Appendix B) can be found.
!\'e flnd that t' : -2.7014 m2 f s a:nd ri = 0.011 m for the vortcx in the circle of Fig. 12. Curiously rakc

vorticity ficld arc dividcd by 100 as regard to corresponding PI\'-LST vorticity (lbr examplc compare files
rakel:)7|.dat a:nd piu|i7l.daf): wc then have multiplied rakc vorticitv and PIY-LLF vorticit5, by 100. This
procedure of finding the circulation is rnuch rnoLe accurate than computing a surface integral of the vorticity

,?r r

o.2l

0.1

o

-o. l

z
-0.2-
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(l =- -3.22 m2 ls) or a line integral of the velocity (f = -3.5 m2 ls). The obtained thickness is also more
accurate than the one obtained by using the computed circulation and the extremumof vorticity. The circulation
onthe le{thand wingis | = -4.903 mzf s andtheoneof the righthandwingis I = 5.057 mz f sto be compa.red
withthevaluesof l,=4.125 m2f sarrd l,=3.937m2f sforndbyNLR.Wealsocanfindthera.dialprofileof
W - Uo and extract the axial flux rno in the vortex. 1{è find lhat MslUe = -0.00427 m2 for the vortex in the
circle of Fig. 12.

z-o.t

-o.4 -0.3 -o.2 -0.1 I 
O.' 0.2 0.3 0.4

FIG. 12. Contour-plot of vorticity (same data flle as Fig. 11). The circle is the domain
vortex.

of analysis of the associated

FIG. 13. Radial axial vorticity ( proflle ofthe vortex in the lircle ofFig. 12. \{e show the experimental profile: dotted
üne, the best Gaussian profile: dashed üne and the best non-Gaussiaù profile: solid line.

From the analysis of the positious of the vortices we can display the wake of the six configurations (Fig. 1a).
As ean be seen from Fig. 14 there is no long wavelenght 3D effect in these experimeats. There is first a merging
of the co'rotating filaments with either a 2D merging or a short wavelenght instability merging and then a

2D motion of the resulting trailing vortices. As our code captures 3D curvature long wavelength effect, it is a
useful tools to extrapolate these experimental mid field to the fa,r field by using the last croes section velocity
field. The last stage x /b = Jl of experimental data can be extended to 3D and IMe can cauy out a temporal
computation with EZ-vortex. In order to do this we need to extrart the physical para.meters from the diflerent
last cross seetions,

@
ô
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Configuration .l

-tt-'/-/',_/ /-,-/ _/ -/

Configuration 2

Conliguration 3

Configuration 4

Configuration 6

Configuration 5

2

I

'rlbo
-1

I
2

x/b

FIG. 14- Position of vortices in the

yb

LLS and LLF wind tunnels.
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D. The results to be used as EZ-vortex input

The analysis of the different last cross sections gi\-es:

TARI,E IV. Positions and characteristics of vortices

Clonfiguration rlb
29.83 -0.281
29.83 0"24-r

-0.381
-0.344

-4.107 0.0237

+4.187 0,0236
29.83 -0.272
29.83 0.243

-4.358 0.0215

+4.094 0.0235
-0.406
-0.378

3

3
29.83 -0.271
29.83 0.218

-0.408
-0.374

-5.467 0.0262

+5.467 0.0262
-0.260 -0.0475 -2.296 0.00612
0.280 -0.0625 +2.290 0.00598

In the last cross sec:tioll of conflguration ,1 the vortices are still in the mergirlg phase. \\'e have ro data files
for tlre last cross section of configuration "1. The last section of conflguration 6 is al tf b: i. For these reasorls
ue uill use the last section of configuration 1, 2, 3 and 6.

The last stage r/à = 30 of experimettal data is extendecl to 3D and we carry out a temporal c-omputation r,r'itlr
tiris initial condition. \['e recal] that the trVing span is â:0.6 ?7r and the axial rnean velocity is Lis = 60 mls.
The plrysical paraueters of the computation are : the circulation l, the core radius asper:t ratio e : 6l L (rn'here
I is the distance of vortic:es), the reduced viscosity u : u/ê2: 15.69 10-6 le2 (m2 lsl ancl the axial flux rn6.
Tlre axial flux ms of the theory is related to the experimental axial flux,tfo by m.o = L,Iale (ntr ls). As u'e have
no resnlts for the axial flux in the last section lr'e will assurne nro : 0. Prom Table IV we c:an flnd the relnaining
parameters of the simulations (Table V).

TABLE V. Physical parameters of the simulations

Configuration I (rn2/s) r (m) t)/u lùt /sl

D

ù

6

6

1

2

3

6

+ 4.15
+ 4.23
+ 3.47
+ 2.29

0.527
0.516
0.490
0.540

0.0460
0.0436
0.0530
0.0112

0.0077
0.0082
0.0056
0. I 290

The small core radius aspect ratio e is coherent *'ith the slenderness assurnption.

V. PARAMETRIC STUDY WITH EZ-VORTEX

The last stage r/ô : 30 of experirnental data is extended to 3D and w€ carry out a temporal computation
w-ith this initial condition. The cornputation is stopped at the collision time l" defined w-ith the criteria of
collision d*inlL: 4e where d,*;n is the rninimal distance between the vortices.

The linear symmetric mode characteristics âre given

TABLE VI. Linear mode characteristics.

Configuration Â(m) d(degre) I (tl,)

in Table \'I

1

2

3

6

4.8336
4.7653
4.7673
5.8482

47.61
47.ôO

47.61
47.39

t.992
2.124
3.028
1.078

where Â is the waveleDgth, d the planar angle and B the gro*-th rate of the rnost unstable mode. We checked
that EZ-vortex gives these gro*'th rates in the linear regime for the ,1 configurations.

The nurnerical pararneters of the cornputations are given in Table VIL
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TABLE VII. Numerical para.rneters: open vortices

Configuration 
^

np dt (s) nb nsteps CPU time*(s)
1
n

J

6

4.8336 101 0.000285 I 7950
4.7653 101 0.000285 I 7950

4.7673 101 0.000285 I 7950

5.8482 151 0.00038 8 11925

2542
255t
2558
8548

*SGI R10000 work-station at 225MHz

The linear time is ü = L I 0 where B is the linear growth rate. The result of the computations is given in
Table VIII, where f* = 1/to with to - 2îL2 ll l2l.

TABLE VIII. Linear and collision times (po : 0.01 (m), i.e . Oo lL - O.OZ)

Copfguration t0 (s) tr (s) ti t" (s) ü:
1
)
J

ti

o.42
0.39
o.27
0.8

0.50
o.47
0.33
0.93

1.19

L.2L
1.22
1.16

t.67
1.55
1.14
3.04

3.97
3.98
4.22
3.8

Numerical computation of configurations L, 2, 3 and 6 axe giveû in Fig. 15-18.

Configuration I

t*=0.78

FIG. 15. Vortex Filament Simr:-lation of the far wa,I<e for configuration 1.

t*=0 t*=1.55

t*=2 .34 t*=3 .12 È*=3.90
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t*=0
Configuration 2

t*=0.80

FIG. 16. Vortex Filament Simulation of the far wake

Configuration 3

t*=0 t*=0.84

for configuration 2.

FIG. 17. Vortex Filament Simulation of the far wake for configuration 3.

È*=1.61

E* =2 .4L t*=3.21 E*=4.02

t*=1.59

t*=2 .53 È*=3 .37
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t*=0
Configuration 6

t,*=0.76

our main conclusions ri'ftrJi"y;*:i,iHîài i;f*iliml,the 
rar wake ror conrg.ration 6'

o For the 4 configurations the collision time is about 3.3 times the linear stability time (t" = 3.3rr).

o In dimensionless form all simulations and collision time are almost the same.

o In dimension form configuration 3 is the quickest to reconnect the vortices.

t,*=1.52

l*=2.28 È*=3 .04 t*=3 .80
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VI. CONCLUSION AND PERSPECTIVES

À cocle EZ-vortex has been clevelopecl to compnte t]re motion of slencler vortex filaurents of closecl or opell
shape. The irnplementecl ecluation is the \,I1 cle-singularizecl methocl of linio and I(lein bnt other e<piivalent
equations are also implementecl as a uselirl cor-nparison. The fluicl ural'' be inviscicl or uot, the vortex c-ore is

similar or not, and there can be an axial flor*'or not. 'I'lie valiclitl- of all tliese equatiotrs are basecl ou the
Callegari and Ting asyrnptotic resnlts. The aclvantages of tlie clifferent forrnnlations ancl clisc:retizations of the
associated equations are discussecl. The philosophl.'of EZ-Vortex c'ocle is to keep prograns as sitnple as possible
and to provide clocurnentation botli by x.ay of a text and comments u'ithin tlie cocle itself. It u'ill be available
through the world-w-ide w-eb.

This code has been validated against lotown solutions ofthese equations ancl results oflinear stability studies.
The linear and non-linear stages of a perturbecl tlvo-vortex *'ahe ancl of a four-vortex rvake mocle] have been

studiecl till the reconnection phase, w,hich is outsicle the valiclityof the as1''mptotic anall''sis and of the associated
integro-clifferential equations. hi tlie linear phase the comparison'w'ith analytical stabilitl'results is excellent.
\\'e give the optimal values of the numerical paranteters that give convergecl resnlts rtith tlie cocle.

The experirnental data from NLR in the near- ancl rnicl- flelci have been furtirer analysecl to give the ph-v*sical

parameters needed as an input in our cocle. The vortex filament thicltness rras ttot given iu ihe NLR anall''sis o{
their data ancl is an essential paratneter to give accurate JL) simulations u'hich take into accoLtttt JD curvature
effects. In these experimetrts tire vortex core appears to be slencler ancl there are uo .lD lottg u'avelength effect

in the experitneutal wake. The last cross sec:tion is usecl to clo a parametric studl' of the far wake.

Our main results and conclusions are as follor,i:

o The EZ-vortex code is the irnpler.nentation of a Slender \r:rtex \,Iethocl and is very goocl tool to cotnpute
the far wake up to the long rn'avelength reconnec'tion phase.

o It includes large axial velocity and non-similar proflles in the vortical c:ores. Tlie fluicl mav be viscous or
invisc:id.

o It does not include short *'avelength, rnerging ancl reconnection.

o It has been valiclatecl against linear stabilitl-results.

r It is very eas-v- to handle; a clocumentation ancl typical parametets of cour-ergeuce are givetr.

r It is the orily /ast computation code of the far fleld.

o It allo*-ed us to cornpute temporal evolutiotr of the far field from u'incl tunnel results providecl that the
ph5rsic:al parameters of the experirnental clata in the iast s'incl tuturel cross sectiotr are giveu-

o It needs to be couplecl *.ith near- ancl rricl- fleld results to clo a parametric stucly with the vr,'ing parameters
as an input.

o It was used to do a parametric stud1.' b1.' extencled to :ïD tlie last stage rf b = ,10 of LST and LLF rr'ind
tunnels and running a temporal cornputation.

Our main perspectives are as follow:

o It rnay be a useful tool to cornpute the far wake (up to the reconnection phase) and may be used to
compare far field experintental data from catapult, ton'er tank or flight measurernents in real atmosphere.

o Simple reconnection models [32-34] rnay be also implemented to go throug]r the reconnection pirase.

o Â fast engineering code (in the sarne idea as the 2D code of Corjon [35]) could be developed from this
code b-v- adding 3D models of reconnection so that to continue the computation through the trailing pair
reconnection.

o It is straightforri'ard to add an potential bac:kground flow (i.e. lateral w-ind).

o It could be adapted to do spatial cornputation, i.e c:omputation in a frame attached to the plane rather
than attached to the ground. Such kind of computation was usecl by Saghbitri et al.l.36l to study vortex
breakdown.

r It may be used to studl.- other non-stationary four-vortex wake conflgurations as the oue studied in the
linear regime by Crouch [37] or the non-linear stage of tlro rotating vortices of different circulations.
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c The higher order as1'rnptotic result obtained by hlargerit [38J may be implemented in order to get higher
order results, d-e thicker vortêx core, and to offer the possibility of a quantitative comparison with a direct
uumerical sirnulation of the Navier-StoL.es equations.

It is recomrnended that EZ-vortex is used to develop an engineeriug fast computation code and to give a
cornparison between numerical sirnulation and far field experimental data from catapult, tower tank or flight
rneasurernents in real atrnosphere. Â comparison with far field LIS computations would be also of interest.

It shoukl be rroted that a paper that describes the code aud its validation has been submitted to Int. .I. of
Numer. Meth. in Fluids [9].
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APPENDIX A: THE DIFFERENT VORTEX METHODS AND THEIR CHAR,ACTERISTICS

In tlris appenclix lve give a brief overvie\v of clifferent r:or'ter ntthods atrcl u'e explailt the interest of sknde r
L,or'ter methods.

\iortex \'Iethocls are characterizecl b-v- the following three features. i) The unclerly''ing clisr-retizatiou is of the
vorticitl,-flelcl, rather than the velocity fielcl. L,sualll,tliis cliscreiization is Lagrangian in trature and 1i'ecluently

it c:olsists of a c:ollectiol of particles or of filarnents *'liich carry concentratiolrs of vortir:ity. ii) Art approximate
velocity fielcl is recoverecl frorn the clisc-retizecl vorticitl, fleld via the l]iot-Savart law- iii) TIie vortic:ity fielcl is
tiren evolvecl in time accorcling to tliis velocitl' flelcl.

,\mong the clifferent vortex methods [a] n'hich have the above features, one c:an clistinguish '\iortex Blob
Nletliocls' ancl '\iortex Filament i\Iethocls'. In \rortex Blob N{ethods tlie vorticitl'field is cliscretizecl b5, overlap-
pirrg blobs of vorticity and an eclnation is usecl to evolve in tirne the /ocal strength of each blobs in order to take
into account the stretcliing of the vorticity fielcl. In \iortex Filament Alethocls the vorticity fielcl is discretized by
ol.erlapping fllaments ancl the stretching is automaticalll. ac:conntecl for by the tnovement of clisc:retized points
on the filarnent in relation to one another. In these tt.o methocls tire viscosity tnay be taken into accouttt
b5, a ranclorn walk or a deterninistic tec-hnic1ue. The lliot-savart cotnputation of tlie velocity inclucecl by tlie
cliscretizecl flelcl of N blobs or N bits of filantents leads to a N-body problem. The cost of this cottrputatiou ntav
be climinished by so callecl 'fast solr.er' that use cliflerent tricks : niulti-pole expansiotr for the far fiekl, numerical
evahation of a Poisson's equation on a fixecl gricl (the \rortex-in-Cell method),... In the literature there are
proofs of the c:onvergence of some of these numeric:al scherne to the lJuler or the Navier Stokes ecluation in 2D
or ;lD.

From the point of view of perturbatiol methods Callegari and Ting [10] have derivecl au eqriatiou of motion
for the c:enterline of 'slender' vortex filarnents from the Navier Stokes equations thauks to a matchecl asymptotic
expansion in tems of the thicltress of the filament. \Ve call 'slender vortex filameut tnethocls' the class of
numerical methods r,hich are basecl on the numerical disr:retization of this equation. These rnethocls are inviscicl
or viscous and have the aclvantage to be derivecl frorn tlie Navier Stolies equations. In these urethods tlte thicktress
of the fllaments has to be st.nall, tire1.- clo not take into acconnt short u'aves [39] ancl the distance between t*'o
filaments lias to be greater than their thicltness and so these rnethocls clo not allow reconnection of vortic:ity.
Let us recall that a slender' t'ortet r'irtg of circulation I' is a fielcl of vorticity whic:lt is non-zero only in the
rreiglibonrlioocl of a three-climensional cnrve Cl, callecl the ctnttrline.'I'his curve is clescribed parametrically by
a func-tion X : X(s,I) l{rich denotes a point on the curve as a function of the pararneter s, *'ith s e [-7i, r[, ancl

tlre tirne 1. 'I'he thickness ô of the ring is of orcler / ancl the other length scales, for example the local curuature
1i or the length s of C, are of the same order -L. Sinc'e the vortex is slencler. a small patameter a ( 1 is deflned
as the ratio //I. I-.sing a careful rnatched asyrnptotic expansion in the Navier-Stokes equations, Callegari ancl

Ting [10] found the folloii'ing equation of tnotion

t)xlt)t: Q + ry [ loge+log(.s) 1+C,,(1) + c]*(t))b(s,t),

r,vhere Q : A(s,1) - [A(s,1).t(-s,l)] t(s.l) r'ith

(,\1)

A(s, f) : t(5 + s"/) x (x(s,t) - x(s + s"/))

IX(s, /) - X(s + s',1)l:r

.-+."'
arrcl À(s,s',/) : J' o(t*,/)cls*. Ilere the velocity field is non-climensionalized by f/I and all lengths by -L. In

this Ecluation (41), C,, (/) ancl C,, (l) are kno*'n functions [10] rruhich describe the orthoradial and axial evolution
of the inner velocity in the core. This Dcluation (41) holds for a vortex ring with axisymmetric structure at
leading orcler ancl no axial core variatiotr at this orcler.

Let us recall that the inducecl velocity of a curved vortex filament of zero thickness, r. e. a line vortex, near
its centerline is known to have a binortlal cornponent proportional to its curvature and to the logarithrn of the
distance to the centerline [40,,11]. The induced velocity ol the ceuterline is thus inflnite and this line vortex
rnodel is not tire leading-order part of the expansion of a slende r vortex filatlent in tertns of its thickness. Frotr
tlre point of view- of perturbation methocls lhe slender filarnent corresponds to a boundary layer near its rnoving
centerline. The original Navier-Stokes equations are then stiff to be solved uurnericallv. By using a matched
asyrnptotic expansion in terms of the filament tliickness Callegari and Ting [42,10,32] have derived an equation
of rnotion for the centerline from the Navier-Stokes equations. SVF are nurnerical methocls which are based on
the nutrerical discretization ofthis ecluation [4;]].

*i.' "''* "'''' I
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Previous to this matched asymptotic derivation several ad-hoc desingularizations of tlie Biot-Savart self-
irrcluction of a line vortex w-ere proposed [,1,1]. 'fhese rnethocls introcluce an acl-hor- paromete r o.f desirtgrilori:uLiort
to take care of the flnite tliir:l<ness of the filament. lt the cut-off methotl [:] 1 ,41] the clesingularization is obtainecl
b1, cutting a neighborhood of ilie induced velocity point in the Biot-Savart self-incluction of a line vortex: the
introduced cut-ofi- length is the acl-hoc parameter of desingularization. 'Ihis cut-off tlethocl was usecl iu most
stability studies of slender vortex filamenis [31,46]. For example, r'ith the cut-off integral ter:liniclue [31,45] an

ad-hoc cut-off of the line integral (À2)

(,\2 )

gives a de-singularization of this integral in terms of the distance r to this line and yielcls ilie equation of motiotr:

dxldt: t(s',1) x (X(s,l) -X(s',1)) , ,

-\rù

(^3)
lX(s,t)- X(s/,1)l

n{rere1:[0,2n[\[s-s.,s*s"[ands.isanunknoli'nsmallparametercalleclt\ecut-ofi- /engtà. Thisintegral
(Àll) is singular in tenns of the small parameter s" and can be expanded in terms of this parameter.

By a direct comparison between such ad-hoc equations of rnotion ancl asymptotic equation of rnotion lViclnail
et al. 147,48) and then \iloore ancl Saffman [49,41] give the relation betvreen the cut-off length and the inuer
strnctnre of the filament. À,{ore recently X,Iargerit et al. l2ll did ihe comparison u.ith the Callegari ancl Ting
equation. With this relation the cut-off line-integral equation of the centerline is equivalent to Callegari ancl

Ting ecpration, The comparison between the expansion in s. of Â3 and (Â1) leacls io

'fhis gives the relation betweeu the cut-off length s., the reduced thickness e and the inuer-core paranteters
C.,(t) and C),,(t) of Callegari and Ting. So Ecluations (Â3-Â,1) are equivalent to Dquation (À1). except that,
w-hen s. of (Âa) is plugged into (,\3), the integral is singular in terms of a, ri{rile tlie integral A in ('\l) is not.
This comparison can be done with other ad-hoc desingularisation uethods. The nutnerical cliscretization of
these equations gives other Slencler \iortex Filarnent methocls. IIo*'ever, the resulting justifiecl clesingularization
methods are still stiff to be solved numericalll' as the Biot-Savart desingularized integral of these tnethods is a
singular integral in the pararneter of desingularization: the centerline in the neighborhoocl of any point otr the
filarnent is a boundary layer for the induced velocity contribution at this point and so needs extra discretizecl
elements.

\iortex Filament rnethocls cliscretize the fleld of vorticity by a bunch of overlapping fllaments. 'I'he velocity
induced by a singular vortex fllament C of vorticity

v(r,,pc) -+|,.Igffiffi.,',

I
v = (Ii(x)x) + ô,rr = JcIi(x-x(r',)) 

x t(o/)da/,

I l'"t''.,t

(41)

coo = fo(xl* ôgt : Irt,r*- x(a'))t(a/)da/,

v, = (/{o(x)x) * ô'gt = l"n,t*- X(a/)) x

(,\;)

(Â6)

where

Ii(x) : -[1/(ar)lxllx13. (A7)

Âs the velocity on the fllament is singular, Vbrtex Filament Methods introduce a de-singularization pararneter
r, such that the velocity induced by a regularized vortex filament of vorticity

(48)

1S

rn'here
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I{s(x) = I{,r f"(x) = -e,(x)x/lxl3,
with

.f,(*): f(lxllo)1a3,
s"(x) -- s[*ll").

Here f is a function such that 4î tî f (r)rzclr : 1 and 9(r) : J; f({['d{. The bunch of vortex filaments is
evolved with the induced velocity (49) and a diflusion step can be superimposed. Vbrtex Blob methods are
similar but use an added dynamic equation for the evolution of the strength of each vortex blobs. Instead of
computing the velocity field from (Â9) Vortex in Cells (VIC) methods solve the Poisson's equatiorr

V"lÿo : -@o, (Â13)

wlrere ÿo is the potential vector such that vo = V x ltn.ln these methods fast poisson solver can be used.
By using the Callegari and Ting equation I{leiu and Knio [11] have shown that it is not comect to compute a

vortical flows composed of several thin vortex filarneuts b-v a standard VF method [ôl with only one numerical
filament pet section of vortex (the so called thin-tube model): more than one nutnerical filarnent per section
is needed to insure the convergence of the numerical scherne. Ilow'ever, as it would save computation time to
have only one numerical fllament per section I(lein and linio [11] proposed a cure: they have shon-n how to
adjust the nurnerical desingularization parameter (ihe so called thin-tube thickness) to physical thickness of
the slender vortex fllarnents so that the rnethod is corect. This conected method is based on a comparison
w-ith the Callegari and Tiug equation of motion and gives another Slender \brtex Filarnent rnethod. Âs for
the justified desingularization methods and for the same reasor, the resulting corrected thin-tube rnodel is still
stiffto be solved numerically. This stiflness of the corrected method is now rernoved in the improued thin tube
models proposed by Knio and Klein [12].

(A10)

(À11)
(A12)
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APPENDIX B: THE GOVERNING EQUATIONS

hi this appendix u'e give the integro-clifferential eclnations governing the motion of the centerline that we

have irnplemented in the EZ vortex cocle. They are either the Callegari and Ting ecluations, rl'iric:l are the
leadiug orcler solution of a matchecl as1,'mptotiq: analysis [1tt] , or a sirnple de-singularizecl method, or the NI1

cle-singularizecl rnethocl of Iinio ancl I(lein Il I,1 2]. [ven if these equations are equivalent t]reir discretizecl forrn
rnay be rl-lore or less advantageons from the point of vien' of their numerical stabilit5,' or of the simplicity of their
implernentation as shou'n in Sec:. II. For its historical interest the Local Itrduction [,{oclel (LIA) has a]so been
implemented even if it is not equivalent to the previous equations.

1. The Callegari aud Ting equation of a closed filament

The Callegari and 'f ing ecluaiion is [10]

t)xl dt= ry4 [-loga * log(.5') - r+C,(l) + C.,(t)] b(s,t) ] A(s,ï), (81)

u'here X(s,t) is the centerliue of the filament at time t, s € [-r',r'[ behg a pararneter on t]re fllament; I is its
circulation ancl 1{ is the local curvature. The small parameter a is the as1'-rnptotic parameter of the expansiotl
and corresponds to the aspect ratio ô/I, where ô is the raclius ofthe vortex core and I a typical longitudinal
length. .5 is tlie length of the closecl fllament, (t,n,b) is the Frenet fratne of the curve X, and C,,(t) and C.,(/)
are known functions that clepend on the orthoradial and axial evolution of the inner veloc:ity in the core. Ilere.
A(s, t) is the non-loc:al self-induction of the filament ancl is given by

+rtr
A(s,t) :, la(s*s41r .l

-1

',rrl t(s * s/,1) x (X(s,r) - X(s * s/,1))

lX(s,r)-X(s+s',t)13

a(s*,1)cls*.n'here a(s, t) = ldXldsl, ancl À(s, s', l) -
5+-r

I

2. The cole-stlucture functiorrs C,(É) aud C.(r)

Tlre velocitl' fleld in the core is describecl by introducing the /ocal curuiline ar rcordinate s ystem M (r, .p, s) and
the curvilinear vector basis (c",co,t). Ttris systern is deflned in the follorvingmatrner; if P(s) is the projection
on the centerline X of a point M near the curve then PM is in the plane (n, b) and thus polar coorditrates
(r,,p) can be usecl in this plane ri'ith the associatecl polar vectors (c.,c.p). In the asymptotic theory [10] the
relative velocitl. V is cleflnecl bl' , t)XlfX f V uhere v is the fluid velocity. \\'e denote by (u, tr, to) the radial,
circumferential ancl axial components of V = uc, { r'c, { u,t.

The expressions of the core-structure functions C,,(l) and C.(t) are different depending on the initial leading-
order velocity proflles iu the core and on the viscosity of the fluid. In this subsection we successively give the
velocity proflles and the core-structure functions C,(t) ancl C)*(t) for an iuviscid, similarand non-similarvortex

Inuiscdd uorte:r core

If the fluid is inviscid the leading-order circurnferential and axial cornponents of the relative velocity fleld are

in ihe form [32]

u(r, t) = 16(r/ô-) [.Sols-(t)]-tl',
u'(r. /) tu6(r/d).%/S(f ),

w-lrere r -- rle \ the stretched radial distance to the filarnent, 6 : 6le is the stretched radius, [ro(r7 =
rl6s),ws(q = rl6s)) is the initial velocity flelcl, and .So is the initial lengtir of the filarnent. The e-stretclied
radius ô- is

a-r1t1 = ôo?s'o/s(t).



The inner functions are given by [32]

C:,(t) = C,(0)- toga'(t),

C*(t) : C* (o) [.eols(r)]3,

where Cr(0) and C.,(0) are the associated initial core cônstants.

b. Similar uorter tore

The circumferential and axial components of the relative velocity field for a similar voüex are [32]

u(r,t)-3 lr-.-('ro)'l , u(r,r)=T f *)' ,-('ta)',", 2rrL- " l' a\''el 
"d2 \Sl -

where r and d are deflned as before, and ms is the initial axial flux of the vortex. The stretched radius d is
given by [32]

a?1t1 :râ[#] ,,
tu = 1+§,

o6

6?.:4u {' s(') 
ar,." Jn So

wlrere z - u lez is the stretched kinematic viscosity of the fluid of kinematic viscosity v. The inner functions
are giveu by [32]

c,(t): (1 +r - lnz) /2 - ln(ô-),

C*(t) : -2(sols)n [rnsl(rô)]'? ,

where 7 denotes Euler's constant. The efect of the difusion is easily seen in these expressions through âo lthe
diffusion-added e-stretched thickness ofthe core) in à- and the influence ofthe stretching through the ratio.56/.9.
The inviscid-similar vortex corresponds to ÿ = 0.

e. Non-similar worter core

If the flow is viscous (t, + 0) and the core is non-similar, the circumferential and axial components of the
relative velocity field are in the form

ù(r,r) : f; [* (r - "-,'1 + e-4' ÿa3n^r,tn,)1;"] ,

ru(r'ü) - Ë t#]' l*-uu 
+ e-" ÿt3c^r'^tn')1;"] '

where 4 : t/â and the stretched radius ô expression is the same as for a similat vortex. Here, .t, are the
Laguerre polynomials, P"(nz): L^-r!t') - Ln(rtz), and (C,,Dr) are the Fourier components of the initial
axial velocity u6 and tangential vorticity qn = fô(rua)lôrl/r:

", = lo* wo(rùL^(rl\nart,

o^ = to* 
co(q)L^(rflqdrt.

In particular we have Co -- mol2rii , Dt = T 12r6fi. The inner functions are given by
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C,(t) =- roea + *(r

c*(t) =-Ë [#]'

4rz $ 6âDnD*,4n*, -(,*-J
fz L n'r* ''

(n,m)€t§?\ (û,0)

tul

I àtc^c^.4n^t;("+^t1 ,

,m)€N3\(o,o) I

tr-los2)+

l*3 . ao'
lfr-f,L("

where

lh(-#) ir't<\/5'

l, ffn>,/t.

0.1

0.1

0.04

o-ù2

3. The Local Induction Approximation (LIA) equation

The Local Induction Approximation (LIA) equation is

axl ü: ry4 [- log e + log(.s) - 1+C, (r) + C. (r)] b(s, t). (82)

In this approximation the non-local self-induction Â(s,t) of equation (Bl) is not taken into account. This
regular term is indeed negligible in the small e limit.

An^ : 
to* "-'* 

r,*x)Ly,(x)dx

o.

o.

0.

-o 0.5 1 1.5 2 2.5

FIG. 19. Vorticity (oôÏ/f fleft) and circumferential
similar vortex, the dotted üne for the Rankine vortex

Let us give two examples of non-similar cores with the sarne circulatiori as the similar vortex (o(ry) :
f exp(-42)/:rà-fr of thickness ô-0. The first one is the R,ankine vortex:

rl
(.(,,)=J"do 

ifr<1'

[, if n> l.

The second sne is the witch-hat vortex:

(o(4) =

g"oo.5 11.522.53
velociày ugd;/f (right) versus r, : r/6o. The soüd line is from the
and the darihed line for the witch-hat vortex.
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4. A simple de-singularized method

One of the simplest justified de-singularized equation is [44]

(83)

with

s" (s, t) - 6 exp t-C" (r) - (:.(t)) . (B4)

This method is very easy to implernent. Ilowever, as already explained in the introduÇtion, this equation is still
stiff to be solved numerically aüd so needs extra discretizecl elements near the point on the curve where the
velocity is to be computed.

5. The Ml de-singularized method of Knio and Klein

The Ml de-singularized equation of Knio and I(lein [11,12] is

lxl dt = * l,r,*', 
r,ffior',

6ttm - eexp(ctt- +l- c"(t\ - c.(r)),
01 = \tmor,
oz :2o1,

arkar = ar,Sfî", a(s, t).

* l ',u','rti("'') " (x(''') 
6Y'

ô}.li)t:vo, *(v,, -vo,) ffi;
where

r Ï' 
o,r,.r,,t(r',t) * [x(r,t) - X(s',t)].. /lx(",,) -ë§_.!]\ ds,,i = t,2o""= qo J lx(s,r) - xG;i"-^ (.-; /

with r(r) : turr,l.tfioa

(85)

\4iith the choice of rc(r) = tanh(r3), the Ct'* constant is Cttn = -0.4202 as obtained by Ifuio and Klein [12].

ItcanbecomputedfromEqs. (4.23),(4.22)and(3.23)ofI(leinanclKnio[11]withachangeofsignofç{1)'tt*
in their equation (4.23).

Through a direct matched asymptotic expansion in o-; of (86) and a comparison of the associated expanded
equation of motion with the Callegari and Ting (81) equation of motion w'e obtain the following expression of
lhe Ctt* constant

Cttm _-log(a) + lo'*b)/rdr* lr* 
4|fr-

for any function re(s) zuch that rc(s) : 1 at infinity. The choice of n(r) = ar [[ {'f({)d{ *-iih f(r) :
r-312 exp(-rz) can be analytically computed and gives Cttn - -1 + 0-57 where 7 is the Euler's constant.

6. Mutual induction and open fiIaments

In case of several fiIaments Xi their induced velocities

(86)

(87)

(88)

(80)
(810)
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are added to the self-incluced velocity of X.
À periodic open filarnent of wavelength :t(t) in the axial c, directior satisfies X(s f 2n, i) = X(s, t) * À(f )c, .

From Callegari and Ting's equation [10] one can deduce the following equation for such a filament:

A}f.lt)t=11{(s,T}[-lna*lnÀ(t)- 1+C!(ü)+O,(r)]b(s,t)/4n]A(s,t), (812)

where A(s, t) is the non-local self-induction of the filament and is given by

A(s,t) = *f /_: a(s 1s',t) lffi
, (Y - tÀ(,,r,,1t) T#ff] r,',

where .É1 is the lleaviside function. The expression of the core-structure functions can be obtained b3 replaeing
the finite }ength §(t) bi, the wavelength Â(T) of the periodic filarnent in the previous expressions of a elosed
vortex. For such a filameut equations (82), (83) and (85) can berewritten in a similarwây as equation (Bi)
becomes (812).
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APPENDIX C: EZ-VORTEX DOCUMENTATION

1. General

The EZ-Vortex package uses OpenGL for JD rendering ancl has been optimized for use on SGI u'orltstatiotrs.
R1. using the NIesa librarl,- (public clomain iurplementation of tnost OpenGL routines) it shoulcl be possible to
rlln on virtuallJ-any rnachiue supporting X. EZ-Vortex coulcl be rul) on a PC with the Linux operating systern.

See http://mesaild.sourceforge.net/ Note, yon cran lun q'ithout graphics, but you tnust have OpenGL (or \'Iesa)
heacler flles ancl libraries to use the cocle.

'lhis coc.le is aclapted from EZ-scroll a Code for Sirnulating Scroll Waves clevelopecl by Dwight, Barkley
(http://u'r''q'.rnaths.u'arr.ick.ac:.uk/-barkley/ezsoftrvare.htrnl) with courtesy of Drn'ight Barltlel''. 'fhe EZ-

Vortex pacliage (in particular tliis document) is uncler cleveloprnent. There are aspec-ts of tlie cocle which
ones n1a]' not be iiappl'' r,r'itli, but to m1'' kuowledge everl'-thing I'orks correctly.

T'he philosophl' of tire original cocle ancl this one is to lieep progrann as simple as possible aud to provide
clocumentation by,- r.ay of commelts u'ithin the c:ode itself. The user is expectecl to tnodif-v- the programs

ar-corcling to his or her needs. The bulli of the pacliage is clevoted to graphics. Almost all of the execution tit.tre
is spent in a loop in tlie routine StepQ ir ezstep1d.c

'I'he compntational methods are r,lescribed in more cletail in the follo*-ing referel)c'es. Ref. [29] clescribes the
3D irnplementation of the initial Code EZ-Scroll. Ref. [10] describes the as5;Inptotic clerivation of the Callegari
ancl Ting ecluation of motion. Ref. [a0,12] describes the equations ancl the computational tnethocls. Ref. [11,21]
clescribes the expansions of the Biot and Savart law. In Ref. [22] the non-sirnilar c:ore equation are surntnarized.
If 1,-ou generate publications frorn using EZ-Vortex, I ask that you cite the \,Iargerit et ai. paper [17].

2. Rurrlritrg EZ-Vortex

Filcs: \bu should have the following files:
e:r'orter.c, t:steytJd.t', e:gr'aphSd.c, e:opengl.c, eztorter.h, tzstep?d.h, ezgraphJd.h, e:opengl.h, tasl;.dat, ic.rn,

fc.nt. histot y.rn, ancl l[aketile.
\bu u'ill probabll'n,ant to sar.e copies of these files (in compressed tar forrnat).
rrrakc: lt is up to 1,-ou to ec-lit )Iakefile as neLressaïy for 1''our systern. Ybu can either cornpile using SGI C (cc) or
else nsing GNI. C (gcc). lbu rnal', if von lrish, specify NP (the number of point on a filaurent) etc. ai compile
time. 'I'hen ihese u'ill be ignored in the task flle.

Note: On an SGI, using the SGI C compiler cc t'ith D\P etc gives the fastest execution. I--sing ihe GNU C
cornpiler gcc with -DNP is slightl-v- slot'er and gcc ri'ithout -D\P is slightll' slower still. L,sing cc without -DNP
is terrible and should not be used, i.e. if you *'ant to spec:if1'' the mtmber of grid points tirrough the tasft.daf file,
then you should to use GN[. compiler and not ihe SGI C cornpiler. This is still being ]ookecl into.

Note: in our laboratorl'- ihe LOÂDLIBES macro in the rnakefile is

o SGI rnachine (Berlioz):

LOADLIBDS : -lGL -l\11 -lXext -lm -l/usr/include

r linux machine (Liszt):

LOÂDLIBES : -I/usr/Xl 1R6/include -L/usr/X1 1R6/lib/ -lGL

-Llusr/Xl lR6/libl -lXl1 -lm

N{ake e:uorfer by typing moÀe. Then run b-v- typing ezr:orter. Â *'indot- should open containing an initial
condition for the vorticity flelcl, i.e. one or severâl closed or open filatlents. The centerlines of the fllaments are

plotted. Ilitting the space bar in the EZ-Vortex windou'r,r'ill start the simulation. This is a coarse resolution run
sho*.ing the speecl possible u.iili EZ-Vortex simulations. With the pointer in the EZ-Vortex t'indow-, you call:

(1) Srn'itch betr,r.een curve displaJ-, r:ornl clisplay and no fleld b1'- typing c, to, or n respectively. The worrn
clisplal,' is a tube display' u'itlt a thicliness that allou's to have a 3f) view n'ithout rotating- \Mithout
rotating, no 3D vien'can be seen frorn the curve display. The tube radius is onll/ geornetrical: it is not
Iinkecl to the physical raclius w-]rich ma1,-change clue to the global stretching or to diffusion.

(2) Pause the simulation by t1''ping p, aucl resutle by tJ'ping a space.

(.1) Rotate the irnage b1'flrst pausing the simulation, then b-v- holding down the left mouse button atrd moving
the cnrsor.



(a) The ltey r resets the viex'to the initial (start up) view, and : sets the viet'to looking clown the ;-axis
with the r:- and ÿ-axes in the usual orientation. This view is nseful for rnoviug the inage.

(5) The arrow- ke5rs urove the image in the x-y direc:tions. 1'he f key moves the image tlp the z-axis ancl the

- troves it down the z-axis. Again, for moving the image it is best first to have set the view b1' typing :.
(ti) Stop tlie sirnulation b-v" typing:

q for soft terrnination with all flles closecl or
D,SC lor immediate termination without r,r'riting flnal conditions (equivalent to typing control-C from the
shell).

(7) Snapshot the vrindow (on a SGI workstation) by typing s

Âfter a successful rult, you will have a frle fc.dat in your directory vuhich contains the flnal conditions of the
run. If you copy this file to ic.dat, tlien the next tirne you run ezt'orter, this flle will be read aud usecl as att

initial conclition. (The frles ic-dat.m rnd fc-dat.m are Nlatlab files that can also be used to see initial and final
conclitions. )

3. Equations

Ybu lrave the choice betw-een four ecluations of vortex filament motion u{rich are inplementecl in e:t,orter.h.
These equations are given in ,\ppendix B.

4. Compilation Macros

The nrain conrpilation pararneters are in ezrorter.h

o Ybu can choose the equation of motion'n'hether the macros LOCAL-INDUCTION, CALL AND-TING,
DE-SlNGU, and Ml-KNIO-KLEIN are set to 1 or 0.

o You can choose closecl or open fllament ri.liether the macro CLOSED is set to 1 or 0.

r Ybu can have graphics or not at run tirne w-hether the rnacro GRAPHICS is set to 1or 0.

o You can snapshot different liistory steps if the rnacro MOVIE is set to 1 (only on a SGI rtork station).

r lbu can rr:n a history.dat frle lnstead of cornputing *-hether the rnacro COMPUTE is set to 1 or 0.

r Ybu can have a nor-similar part of the core or not w-hether tlte macrro NON-SIMIL-PART is set to 1 or 0.

The macro SIMIL-PART iras to be set to I in atry case.

o Ybu can have an uniform core by setting the macro SIMIL-PART to 0 and tire tnacro UNIFORM-CORE to
1 (io be coherent 1''ou have to choose nu-bar:0 h task.dat).

o lbu can choose to have spectral spatial derivative or not by setting the rnacro SPECTRAL to 1 or 0.

o lbu can choose to have an explicit (order 1) time stepping with the rnacro EXPLICIT, an implicit one
with the rnacro NEWTON, and an explicit Âdams-Bashforth with the macro ADAMS-BASHFORTH. The
explicit rnethods (order 1 or Âdams Bashforth) can be performed either w-ith a .Jacobi iteration or a

Gauss-Seidel one u'hether the macro GAUSS-SEIDEL is set to 0 or 1. The Callegari and Ting methocl and
the LIÂ rnethod are numerically instable with an explicit (order 1 or Adams Bashforth) scherne either
a .Jacobi or a Gauss-seidel stepping is used. The M1 I(nio and I(lein method is stable *'ith an explicit
scheme.

r Ybu can test the convergence of the Biot-Savart velocity cornputation at initial time if the tnacro
CONVANALYSE is set to 1. A frle look is then generated w-ith three columns associatecl to the three
components of the velocity on the filarnent. The convergence cau be assess with the nurnber of point and
also w-ith the nurnber of periodic boxes for open filaments.

o }bu can have an autouratic rnotion of the graphic u,indow' in the z direction or uot w-hether the macro
MOVE is set to I or 0.
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5. Pararneters

Tlre pararneters are either set in the routine Generate-icQ at the encl of ezr,otttt-.t: u'heu these vortir-es are

initially c'reated or in the frle task.dot.'lhe parameters of ,.rsli.dol are loacied at the beginning of a tun ancl so

you need not to re-cornpile e:uolter rvhen these pararneters are cha[ged.
In the case of similar vortex filarnents delta-0-bar-param is tlie initial stretchecl c-ore raclius ô-6, m-0-param

is the initial axial flux m0, gamma+aram is the r:irc:nlation I, ancl epsiton is the redricecl thickness e. They
are pararneters of the core struc-ture. nu-bar is the stretched viscosity z of the fluicl. Thus the "physical"
parameters in the simulation are: delta-O-bar-param, m-0-param, gamma-param, epsilon, nu-bar aucl nf the tturnber
of filaments. The pararneters delta-O-bar,param, m-O-param, gamma+aram are selected fbr eac:h filaments in the
routine Generate-icQ at the end of ezlortex.c *'hen these vortices are initialll'createcl. The pararneters epsilon
and nu-bar are set in the flle tasl;.dat.

The "numerical" parameters for the simulation are: np = number of spatial points in each filaurent, ts: time
step, n-b : number of perioclic boxes (for open filatrents) ancl are also set iti tlie file tasli.dat.

The other parameters set in fasÀ.daf are:
Number of time steps to take
Time steps per plot. Also set the nurnber of time steps per filarnent c:olnputatiou
error-stop. Error to stop the Ne*'ton iteration for the implicit methocl.
Time steps per write to history file ancl of snapshot if MOVIE is set to I in ezL,orter.h

initial field display : curve or lr'onn
initial condition type : frorn 0 to 12.
output type : ascii or binary

verbose
These are rnore or less self'-explanatorl''.
If Timestepsperwriteisnon-zerotlientirefllarnentdatarvillbex'rittentoaflle (historu.dat) everyTimesteps

per write (whether or not there is any graphics) rvhicli can be execnted by t:L'ortern'ith tlie macro COMPUTE
set to 1. (The filarnents r,r-ill also be savecl everl.Time steps per write to a flle (àistoru-dat.m) t'hich can be
executecl w.ith matlab.)

I leave it to you to look at different initial coldition t1'pes at the end of tasl;.dat attd e :t'orfel'.c. The nurnber
of filaments nf set has to be coherent with the initial condition chosen. \bu cau ciroose betweeu :

(0) Oscillations of a \rortex Ring (Standing *-ave)

(1) Oscillations of an ellipse in a plan y-z

(2) Oscillations of a Vortex Ring (Travelling w-ave)

(3) Oscillations of a triangle Yortex Ring
(-{) Nlotion of a Lissajous ring
(5) Motion of two side by side vortex rings
(6) Leap frogging of two vortex rings

(7) Motion of tn-o face to face (and shifted) vortex riugs
(8) Motion of tw-o face to face vortex rings
(9) Motion of tw'o linked vortex rings
(10) I\Iotion of trn-o vortex rings

(11) Oscillations of a straight filarnent
(12) Motion of a helical filament
(13) Oscillaiion of two trailing vortices

(14) Crow instability of two trailing vortices

(15) Cron'instability of tw-o trailing vortices (initially at rnost instable angle)

The other place to look for "parameters" is in the header files. The rnain compilation parameters are in
ezuortex.h. Many of the rnacro cleflnitions in the other heacler files can be replaced *'ith variables.
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APPENDIX D: VALIDATION AGAINST EXACT SOLUTIONS AND LINEAR STABILITY
RESULTS

In this appelxtix $ie valiclate the rrocle EZ-vortex against lnou'n solutiol)s of the ecluations of rlotion for the
centerline ancl results of linear stability' stuclies. \\'e also give the values of the nnmerical parameters that give
cronvergecl rlur)]eri(ral results for the clifferent confignratior)s under consideration. Àll follou'itrg simulations use

tlie lIl cle-singularized methocl of l(nio ancl Iilein rvith the explicit Adarns-Rashforth sr:heme, there is no axial
florv (nr,6 : 0) ancl the fluicl is inviscicl (rr: 0). I]ere, the vortex core is similar and I : 1. Às the initial reclucecl

thicltness is ô0 : 1 the srnall parameter a is tlie initial tliicltness ô6.

1. The pertrrrbed circttlar vortex ring

lhe velocitl, of a circular vortex rirlg of raclius J? ancl thicltness ô is [o0,a1]

II'- _
JnF ('*ï +(;u-1+c",) ' (D1l

For a sinrilar core rvithout axial veloc-it1.' C.', = 0.442 ancl C',,, = 0. In figure 20 rve plot the velocity tr' of the
vortex ring of raclius -E : 1 as a func-tion of tlie initial thickness a. Nurnerical results (c-rosses) are in excelleut
agreement ri'itli the anall,tical result (solicl line). The numerical parameters of the cotnputatiou are given in
Table IX for the \,I1 methocl of Iinio and Iilein lvith the explicit Âclams-Rashforth scheme (Run 1) or for the
Callegari ancl Ting ecluation u'ith an implicit iteration (Run 2).

The periocl 7 of a rl orlal perturbation rvith azimuthal w'avenutnber n is

T: I7ir -Rl (D2)
rt/t,,f; ÿ((n)lf (nr - t)fô + s,@\l

r.liere!!:lrRYll ancl[.q6(n),9r(n)] aregii'enin\targerit etul. li(\). Infigure2lit-eplottheperioclTforthe
mocle 3 of the perturbecl r.ortex ring as a function of :. \umerical results (crosses in Fig. 21 aucl Run:l in Table
IX) are in excellent agreement u.ith the anal5.tical result (solicl line). Tire initial arnplitucle of the perturbation
is ps : 0.01 with the centerline in a plane. This periocl is founcl b1'' using pr the amplitucle part orthogonal
to tlie propagating cliret:tion r. It is given b1'- p1 - "bs[JZ\Y1 - mean(r/Z] +F)] *ùere X: (X,Y,Z)
and w'lrere mean is tlie spatial average on the filament at time t. The pulsation is then fouud w'ith the slope

of the ternporal funertion arccos[p1/pr(0)] . 'this slope does not depend on the point of abscisse s that is used.

In practice u.e clo not choose an1.' point ancl use t]re maximurn of p1 over the filarnent. It cotrverges with all
nurneric:al parameters (time step, number of points) and'rith clecreasing initial amplitucle po.

T,{.BLE I\. \urnerical prarameters: closed vortices

Run CPll time.is)
Vbrtex Ring Velocitl.':\'I 1

lr :CT
Vortex Ring Period
Vortex Ring Pair

7000

250

7000

1

2

3

4

101

237

101

0.0016

0.0016
0.00008125

79.8
186

t7
1200

-SGI Rf0000 work-station at 225NIHz

The period at 6 :0.15 is not exactll.'on the curve, This small difference comes from fitrite € effect. N{l I(nio
and Iilein method atrd Callegari and Ting equation has been proved to be equivalent in the asyrnptotic small e

lirnit. When a = 0.15 ll'-e notice (flgure 22) a clifference of the Biot-Savart results given by these two methods
w-hereas tliere is no cliflerence for a :0.02. \\'e believe that this difference is due to the next-order correction in
e ri'hich mav r1o longer be neglected at a = 0.15. All rnethods ancl stability equations are equivaletrt at leacling
order but may be slightll' clifferent clue to the effect of next-order correction.
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FIG. ?0. Velocity ÿ of the vortex ring veisus 6. The solid üne is from the analytical result arrd crosses from numerical
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FIG. 22, Binormal velocity ÿ at initial time for the mode 3 of the perturbed vortex ring e - O.l5 versus the node
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equation. Same parameters as in Fig. 21.
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2. Motion of a vortex ring pair

\\'e consider two circular vortex rings in the same plane u'ith sanle center and thicliuess ô. Let lo, ll , -R"

and .R; denote the circulations arlcl tire raclius of the outer and irner vortices. \1'e introduce the ctiureusionless
pararneters R. : RtlR,. and G : l;/1,. There is an exact stationary solution of the equation of motion (Ill)
providecl that the follorn'ing relation between G and ,R is satisfied [52]

(D3)

rn-lrere fr = 2\/ R I I * Â) . Ilere .O ancl 1{ are cornplete elliptic integrals of second and first liinds. 'I'he assoc:iatecl

velocitv I,' is

(D1)

FIG. 23. Velocity 1r of the vortex ring pair versus e for R:0.5 Same legend as in Fig. 20

In flgure 23 u'e plot the velocity l'of the vortex ring pair as afunction of e for rR: 0.ô and l; : 1. Numerical
results (crosses in Fig. 23 and Run 4 in Table IX) are in excellent agreernent with the analytical result (solid
line).

3. The perturbed straight filament

The period of rotation of a sinusoidal perturbation on a straight filament is

8n2 (D;)T-
tk2l1/2 - 1 +Iog(21 6k) + C" - 1 + C. l'

w-lrere 7 :0.57721i, ô- is the core radius, I is the circulation and fr : 2rlltis the wave number. This result
generalizes to an arbitrary vorticity profile the classical I(elvin [53] result for the bending modes of a Rankine
vortex for small ra'ave-numbers. I{elvin obtained it by considering infinitesimal perturbations to a columnar
vortex; we obtained it b1,-infinitesimalperturbations to the straight centerline in (812).

In flgure 24 w-e plot the period T for the wavelength À = 1.25 ofthe perturbed straight vortex filatneut as a

function of e. Numerical results (crosses in Fig. 24 and R.un 5 in Table I) are in excellent agreernent w-ith the
analytical result (solid line). The initial arnplitude of the perturbation is pg = 0.01. This period is found by
using p, the amplitudepart in the y direction. It is given b5, p, - abs(Y -Y) where X: (X, 1',2) and rnhere

Y is the spatial average on the filarnent at time t. The pulsation is then found w-ith the slope of the temporal
function arccos [pu/pu (0)].

\, : h[og(sfi;/d) t c,, - 1+ c].). hw@ll - Â) + 1i(À)/(1 1Â)J.
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