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Cookbook asymptotics for spiral and scroll waves in excitable media
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Algebraic formulas predicting the frequencies and shapes of waves in a reaction–diffusion model of
excitable media are presented in the form of four recipes. The formulas themselves are based on a
detailed asymptotic analysis~published elsewhere! of the model equations at leading order and first
order in the asymptotic parameter. The importance of the first order contribution is stressed
throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are
given for spiral waves and detailed comparisons are presented between the asymptotic predictions
and the solutions of the full reaction–diffusion equations. Recipes for twisted scroll waves with
straight filaments are given and again comparisons are shown. The connection between the
asymptotic results and filament dynamics is discussed, and one of the previously unknown
coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic
expansion. ©2002 American Institute of Physics.@DOI: 10.1063/1.1494875#
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Propagating waves of excitation are frequently found in
chemical media such as Belousov–Zhabontinskii reagent
and in biological media such as nerve cells and cardiac
muscle. In two space dimensions these waves common
take the form of rotating spirals. In three dimensions
these waves can take quite exotic forms, but commonly
the underlying spatial structure is that of a scroll. The
observation of these waves in an ever increasing numbe
of situations presents a range of fundamental questions
concerning their selection, dynamics, and biological func-
tion. The focus of this paper is the issue of pattern
selection—specifically how results from asymptotic analy-
ses of model reaction–diffusion equations lead to accu-
rate predictions for the shape and rotation frequency of
waves in homogeneous excitable media.

I. INTRODUCTION

Rotating spiral and scroll waves are a common occ
rence in two- and three-dimensional excitable media.1,2 One
of the basic issues for such waves is the pattern selec
problem: In a homogeneous medium free from defects, w
selects the rotation frequency and the shape of the waves
how can these properties be predicted from underlying eq
tions? This problem has been considered by a numbe
authors over the years.3–20 Either directly or indirectly the
approach is always to exploit the inherent scale separatio
excitable media. The time scale of excitation is vastly sho
than that of recovery. As a result, the regions of rapid cha
in the medium are very small compared with typical leng
scales, e.g., the wavelength, of the pattern.

The most complete progress on pattern selection in
citable media has been made by addressing the f
boundary problem first proposed by Fife.4,6,9,12,13,16,17,20The
medium is divided into appropriate regions and appropr

a!Author to whom correspondence should be addressed. Electronic
barkley@maths.warwick.ac.uk
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expansions are made in each region. Asymptotic matchin
then used to reduce the problem of wave propagation to
motion of a free-boundary separating excited and quiesc
~unexcited! regions of the medium. In this way the patte
selection problem becomes similar to a variety of other
terfacial pattern formation problems such as solidificat
fronts and multiphase flow.21

Recently we reported preliminary results on the exte
sion of the free-boundary approach beyond leading orde
the small parameter.20 As we shall show throughout this pa
per, the extension to next order in the small parameter p
vides accurate predictions in large parameter regions wh
have hitherto been unaccessible analytically. The purpos
this work is threefold:~1! to clarify terms and concept
which are not given precise meanings in the literature, in p
because until the recent extension of asymptotics to first
der, such precision has not been required;~2! to show, by
means of simple algebraic recipes, how asymptotic res
can be used in a variety of conditions;~3! to give a fairly
comprehensive comparison, over a range of conditions
the results of asymptotic predictions with full solutions
partial differential equations.

II. BACKGROUND

A. Model equations

We begin by considering a standard two-spec
reaction–diffusion model of excitable media:22–24

]u/]tn5Dn“n
2u1 f ~u,v !/«n , ~1a!

]v/]tn5g~u,v !. ~1b!

The parameter«n is small.
We shall consider the following specific functions mo

eling reaction kinetics:

f ~u,v !5u~12u!S u2
v1b

a D , ~2a!il:
© 2002 American Institute of Physics
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g~u,v !5u2v, ~2b!

where the parametersa andb control the excitability thresh-
old and duration in the model. The functionf has an
N-shaped nullcline with two stable branches. It is not nec
sary thatf be a cubic nonlinear function as in Eq.~2a!, but
this is the easiest case to consider. The functiong is linear,
and while this is also not required, it is the simplest case.
concreteness we shall consider only reaction kinetics~2! in
this paper; however, the analysis applies equally to all si
lar models, such as the classical Fitzhugh–Nagumo eq
tions. ForDn51 the units in Eqs.~1! are those commonly
used for this model.

Equations~1! are written in a ‘‘laboratory’’ or ‘‘natural’’
system of units~denoted by the subscriptn!. Equations com-
ing from physiology might be written in such a form prior
any rescaling. The characteristic time scale ofu is fast, ow-
ing to the factor 1/«n in Eq. ~1a!, while the characteristic
time scale ofv is order one. There is not a single best cho
of units for the equations or even one choice for what mi
be considered appropriate ‘‘laboratory’’ units. Winfree,25 for
example, has considered a number of scalings for
reaction–diffusion equations, each corresponding to a
ticular choice of length and time units. For our purposes E
~1! is a sufficient example. We need only one other particu
scaling of the equations which we explain momentarily.

Consider the behavior of spiral-wave solutions of E
~1! as the value of«n is reduced to zero. One finds that in th
units in which Eqs.~1! are written, the spiral frequencyvn

diverges to infinity. This is shown in Fig. 1 for a typical s
of parameter values. Simultaneously, it is found that the
ral wavelength goes to zero as«n→0 ~not shown!. However,
there is freedom in the choice of length and time units
which to write the equations. In general, other choices w
result in the frequency either diverging to infinity or el
going to zero as epsilon goes to zero. Likewise, the wa
length will not remain finite and nonzero asen goes to zero
in general.

It was Fife4 who first proposed the appropriate choice
units such as to give afinite, nonzerofrequency and wave
length as« goes to zero. The change of units is given
Table I. The small parameter«n is also rescaled for conve
nience. Reaction–diffusion equations~1! rewritten in these
units become

]u/]t5“

2u1 f ~u,v !/«2, ~3a!

]v/]t5«g~u,v !. ~3b!

For a perturbation analysis in powers of« it is normal to
multiply through the first equation by«2. However, for nu-
merical work it is better to consider the equations as giv
here. In addition, in this form ones see directly the differen
with Eqs.~1!.

In these equations, as in Eqs.~1!, «50 is a singular
parameter value and is not obtainable. However, unlike
Eqs.~1!, spiral solutions to Eqs.~3! approach a sensible limi
as « goes to zero. See, for example, Fig. 1~c! showing the
approach to a finite, nonzero frequency for spiral solution
Eqs.~3!.
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B. Fife terms

It is necessary here to make precise certain terms wh
appear frequently in the literature, but which are not alwa
given the precise meanings that we require. These terms
associated with the name Fife and involve the small eps
behavior of solutions to the reaction–diffusion equations.

1. Fife limit

By the Fife limit we shall mean the limiting value o
solutions of Eqs.~3! as «→0. For example, the valuev (0)

FIG. 1. Spiral frequency as a function of the small parameter in Eqs.~1! and
~3! with a51.0, b50.1. Points are from numerical solutions to th
reaction–diffusion equations. Dotted curves are the leading order, i.e.,
limit, asymptotic predictions. Solid curves are the asymptotic predicti
including the first-order terms considered in this paper.~a! The divergence
of the frequency, measured in ‘‘laboratory’’ or ‘‘natural’’ units, as the sm
parameter goes to zero.~b! Same as~a! except on a log–log scale. Th
leading-order asymptotic prediction is a straight line with slope21/3. ~c!
Frequency in Fife units showing the finite limit obtained as«→0. The
leading-order plus first-order asymptotic prediction is the straight line.

TABLE I. Relationship between ‘‘laboratory’’ or ‘‘natural’’ units and Fife
units. For completeness, frequencyv and wavelengthl are included.

Natural Fife

«n
21/6Dn

21/2xn 5 x
«n

21/3tn 5 t
«n

1/3 5 «
«n

1/3vn 5 v
«n

21/6Dn
21/2ln 5 l
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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illustrated in Fig. 1~c! is the spiral frequency in the Fife limit
The Fife limit corresponds to values at leading order
asymptotic expansions in the small parameter« or «n .

2. Fife scaling and Fife units

In the literature the termFife scaling is used to mean
two closely related things. The first is the particular choice
units in Table I for which solutions are finite as« goes to
zero. For example, Eqs.~3! are said to be the reaction
diffusion equations written in the Fife scaling. To avoid co
fusion, we shall say Eqs.~3! are written inFife units.

The other meaning of Fife scaling is as follows. Know
ing the Fife limit of Eqs. ~3!, that is the leading-orde
asymptotic result in Fife units, it is possible to deduce
leading-order behavior of spirals in other systems of un
Consider, for example, the spiral frequency. In the natu
units of Eqs.~1!, we have directly by change of units th
vn5«n

21/3v (0)1¯ as«n→0. The leading-order scaling law
for the frequency is thusvn;«n

21/3. Such a scaling law is
often referred to as Fife scaling. It is implied immediate
from the change of units in Table I and the fact that t
spirals solutions of Eqs.~3! have a finite~Fife! limit as «
→0.

3. Fife regime

Finally we define theFife regimeas the range of epsilon
for which the Fife limit is a useful approximation. This is
matter of opinion and will depend on model parameters
general.

C. Discussion

Over the years there has been considerable interest in
asymptotic analysis of spiral waves at leading order in e
lon ~e.g., Refs. 6, 8, 9, 12, 13, and 16–19!. These analyses
give the Fife limit and the associated Fife scaling, for e
ample, the relationshipvn;«n

21/3.
Attempts have been made to verify this scaling throu

direct time-dependent numerical simulations of the reactio
diffusion equations.12,25 Typically such verifications have
been based on log–log plots such as shown in Fig. 1~b!.
Figure 1, which is an expanded presentation of the data
presented in Ref. 20, is the most complete verification of
Fife limit and associated Fife scaling to date. It covers
substantial range of epsilon down to quite small values. T
solutions to the reaction–diffusion equations have been c
puted using Newton’s method rather than by time-depend
simulations.26,27

The first thing to note about Fig. 1 is that working d
rectly in Fife units is the best approach to understanding
behavior of spiral waves at small«. This is true in large part
because quantities have simple whole-power expansion
«, e.g., v5v (0)1«v (1)1¯ . Working in units other than
the Fife units tends to obscure the behavior as epsilon goe
zero and analyses based on log–log plots are not opti
For example, the existence of a finite Fife limit is well su
ported by the data for only«.0.15 in Fig. 1~c!, whereas the
existence of Fife scaling~slope21/3! in Fig. 1~b! is not well
supported by the equivalent range, log(«n).22.5. Surpris-
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almost nowhere reported directly in Fife units.

Another important feature seen in Fig. 1 is that the F
limit itself does not provide an accurate quantitative pred
tion of wave properties. That is, the Fife regime is not ve
large.~The exact size will be model and parameter depend
and may be larger in some cases.! Frequencies and othe
quantities are of the correct magnitude, but otherwise are
quantitatively accurate. However, as the solid curves in F
1 show, an asymptotic expansion to next order~order « in
Fife units! is accurate over a considerable range in epsil
At the upper end of the range epsilon shown in Fig. 1, wh
the spiral frequency begin to decrease rapidly, the medium
only weakly excitable. The frequency falls to zero and b
yond this point the medium does not support spiral wa
~see Refs. 15, 19, 25, 28, and 29!.

Throughout the bulk of the paper we shall work excl
sively in Fife units and consider asymptotic expansions
first order in«. At the end we return to the units of Eqs.~1!.

III. SPIRAL RECIPES

The goal of the selection problem is to find the rotati
frequency and shape of spiral waves as a function of
parameters appearing in Eqs.~3!, or equivalently Eqs.~1!. In
practice this is accomplished via matched-asymptotic exp
sions. In this section we review equations obtain
elsewhere6,9,12,20using such techniques. We do not conce
ourselves with the details of the derivations. Instead we
cus on the key ideas which are important forusing the
asymptotic results. In particular, we provide procedures
obtaining approximations to the spiral shape and freque
without further need for solving any differential equations

A. Ingredients

We consider spirals which are rigidly rotating at a co
stant frequencyv. We work with polar coordinates (r ,w)
based on the center of spiral rotation and consider solut
in a corotating frame of reference in which the spiral is
steady state. The spiral shape is described by two curve
wave front and a wave back given by the functionsF1(r )
andF2(r ), respectively. Points on the wave back are rep
sented parametrically by (r ,w5F2(r )) and similarly for the
wave front. Together, the two curves divide the domain in
the excited and quiescent regions.

The wave front and wave back actually represent t
interfaces in which the fastu variable makes a rapid chang
between the quiescent valueu50 and the excited valueu
51. Only on the outer asymptotic scale are the interfa
one-dimensional curves. The transition betweenu50 andu
51 must be resolved on an inner asymptotic scale. Wh
the wave front and wave back come together at the cente
rotation there is a small asymptotic region, the core, wh
must be resolved on an inner scale.

In the asymptotic derivation, the different regions a
written in appropriate coordinates, solutions are sough
powers of«, and inner and outer solutions are matched
obtain a complete asymptotic solution. Our only conce
here is the final results on the outer scale. In particular,
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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interest is in the rotation frequency and interface shape
resented by their« expansions

v5v (0)1«v (1)1¯ , ~4!

F6~r !5F (0)6~r !1«F (1)6~r !1¯ . ~5!

We consider the results for the first two orders: leading ord
«0, which is equivalent to the Fife limit, and first order,«1.

We consider only the chirality shown in Fig. 2, becau
it corresponds naturally to a positive rotation frequency. S
rals with the opposite chirality can be obtained trivially f
those found below.

B. Leading-order recipe

At leading order solutions can be found for which t
wave front and wave back are identical in shape with a c
stant angular separation between the two~independent of
r !.9,12,20 For example, the wave front and wave back dra
in Fig. 2 are of identical shape.

The angular separation between the front and bac
given by

DF (0)[F (0)12F (0)252pvs, ~6!

wherevs is the stall concentration ofv: the value ofv at a
planar interface such that the velocity of the interface is ze
The value depends on the particular model kinetics and
rameter values, and is given below for Eqs.~2!.

The interface shape and frequency obey a single uni
sal equation:

dC (0)

dr̃
1

C (0)~11C (0)2!

r̃
5 r̃ ~11C (0)2!

2B~11C (0)2!3/2, ~7!

where C (0)( r̃ ) is the universal shape function describin
both interfaces andr̃ is the universal radial coordinate. The
are defined by

C (0)~ r̃ ![ r̃ dF (0)1/dr̃5 r̃ dF (0)2/dr̃, ~8!

r̃[Av (0)r . ~9!

FIG. 2. Sketch of the spiral geometry and coordinates. The spiral is
scribed by the two interfaces: a wave frontF1(r ) and a wave backF2(r ).
These interfaces separate the medium into excited and quiescent re
The spiral rotates with angular frequencyv. Positive v corresponds to
counter-clockwise rotation.
Downloaded 09 Sep 2002 to 128.122.80.143. Redistribution subject to AI
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The boundary condition atr̃ 50 for Eq. ~7! is

C (0)~ r̃ 50!50, ~10!

while the physically relevant large-r̃ behavior ofC (0), ob-
tained by expanding Eq.~7! in inverse powers ofr̃ , is

C (0)~ r̃→`!52
r̃

B
2

1

B2 1S B

2
2

1

B3D 1

r̃
1OS 1

r̃ 2D . ~11!

This expression is particularly important because it captu
the essential shape of the spiral away from the center.

Finally, the eigenvalueB appearing in Eq.~7! is related
to the leading order frequencyv (0) via

B5~m/v (0)!3/2, ~12!

wherem depends on the particular model kinetics and para
eters. For Eqs.~2! we have

vs5a/22b, ~13!

m3/25&pvs~12vs!/a. ~14!

1. Comments

Equation ~7! is universal because it is independent
details of the reaction kinetics and model parameters fo
large class of models.6,9,12The model and parameter specifi
details are contained in the relationship between the eig
valueB and frequencyv (0), and in the relationship betwee
the universal coordinater̃ and the radial coordinater . It
should be realized that time and space scalings have alr
been accounted in Eqs.~3! from which Eq.~7! is derived; the
further multiplication ofr by the square root of a frequenc
~a pure number! is simply how model-dependent details a
accounted for in a universal way.

The selection mechanism for spiral patterns at lead
order is as follows. The universal equation is a nonline
eigenvalue problem. It has a unique solution with the
quired boundary condition at zero, Eq.~10!, and the correct
behavior at infinity, Eq.~11!, only for a specific value ofB,
the selected value. For any other value ofB the solution
C (0)( r̃ ) changes sign and goes to infinity asC (0)( r̃→`)
51 r̃ /B, cf. Eq. ~11!, possibly by going through a singula
ity at finite r̃ . The result is the selected value ofB,6,9,12

B51.7383. . . , ~15!

and the universal shape functionC (0)( r̃ ).
From the selected value ofB, the selected leading orde

frequencyv (0) is given via Eq.~12!. The selected spira
shapeF (0) comes from the solutionC (0) itself. For most
purposes all that is required is the value ofB and the large-
r limit ~11!. From these the leading order shape can be fo
to a good approximation.

2. Recipe 1

The following is a recipe for obtaining leading-order a
proximations to spiral waves in Eqs.~3! with kinetics given
by Eqs.~2!.

Use Eqs.~13! and ~14! find vs andm for desired model
parametersa and b. Then from the value ofB in Eq. ~15!
obtain the leading-order frequency and spiral shape via

e-

ns.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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v (0)5m/B2/3, ~16a!

F (0)1~r !5F02k(0)r 2
1

B2 ln r , ~16b!

F (0)2~r !5F (0)1~r !22pvs, ~16c!

where

k(0)5
Av (0)

B
, ~16d!

and whereF0 is a constant of integration which sets th
phase of the spiral. Note that by our convention~Fig. 2!, the
spiral frequency is positive. We also definek(0) to be posi-
tive. The fact thatdF1/dr is negative for spirals with posi
tive frequencyv is accounted for with the minus signs in E
~16b!. Comparisons with numerical solutions of Eqs.~3! are
given in Sec. IV.

C. First-order recipe

We turn to the asymptotics at order«. The result of the
matched asymptotic analysis20 is that at order« the front and
back interfaces again have the same shape. The contrib
to the angular separation at first order is zero,

DF (1)5F (1)12F (1)250. ~17!

The universal equation for the first-order contribution
the interface shape and frequency is

dC (1)

dr̃
1 l ~ r̃ !C (1)5Dm1~ r̃ !1m2~ r̃ !, ~18!

where the universal shape function at first order is defined

C (1)~ r̃ ![av (0)r̃ dF (1)1/dr̃5av (0)r̃ dF (1)2/dr̃. ~19!

The universal coordinater̃ is defined as before@Eq. ~9!#.
The functions appearing in Eq.~18! depend on the

leading-order shapeC (0)( r̃ ) and are given by

l ~ r̃ !5
1

r̃
1 r̃C (0)

13C (0)FC (0)

r̃
2 r̃ 1BA11C (0)2G ,

m1~ r̃ !5 r̃ ~11C (0)2!1B~11C (0)2!3/2,

m2~ r̃ !5
5

3

~11C (0)2!2

r̃
.

The universal equation at first order is linear in the sha
function. The solution is found by first finding the solutio
Ch

(1) to the homogeneous problem. The solution is

Ch
(1)5

1

r̃
~11C (0)2!3/2expS 2E

0

r̃

rC (0)~r!dr D . ~20!

Then the solution of Eq.~18! which is finite at the origin
is given by

C (1)~ r̃ !5Ch
(1)~ r̃ !E

0

r̃ Dm1~r!1m2~r!

Ch
(1)~r!

dr. ~21!
Downloaded 09 Sep 2002 to 128.122.80.143. Redistribution subject to AI
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Solutions~20! and ~21! can easily be verified by direct sub
stitution.

One may obtain the shape away from the core by us
the large-r̃ behavior ofC (1) from Eq. ~18!,

C (1)~ r̃→`!52
6DB215

3B3 r̃

2
3DB215

B4 1OS 1

r̃ D . ~22!

Finally, the eigenvalueD is proportional to the first-
order frequencyv (1). This proportionality is model depen
dent. For Eqs.~2! we have

D5av (1). ~23!

1. Comments

The selection mechanism of the shape and frequenc
first order is different from the selection at leading order.
first order the selection is as follows. BecauseC (0) is nega-
tive, the exponential in Eq.~20! is positive, and hence the
homogeneous solution diverges exponentially asr̃→`.
HenceC (1)( r̃ ) from Eq.~21! will also diverge exponentially
unless

E
0

r̃ Dm1~r!1m2~r!

Ch
(1)~r!

dr→0 as r̃→`. ~24!

This selects the value ofD. The selected value can be wri
ten

D52
c2

c1
,

where

ci5E
0

`

@mi~r!/Ch
(1)~r!#dr.

Given the value ofD, the shape functionC (1)( r̃ ) is found by
the integrals in Eqs.~20! and ~21!. In practice all the inte-
grals must be computed numerically~see Appendix A!. One
finds the value ofD to be

D520.9261. . . . ~25!

2. Recipe 2

Here we give a recipe for obtaining leading-plus-firs
order approximations to spiral waves in Eqs.~3! with kinet-
ics given by Eqs.~2!.

First use Recipe 1 to obtainv (0) and F (0)6. Then cal-
culate

v (1)5D/a, ~26a!

F (1)1~r !52k(1)r , ~26b!

where

k(1)5
6DB215

3aB3Av (0)
. ~26c!

Then
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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v5v (0)1«v (1), ~27a!

F1~r !5F (0)1~r !1«F (1)1~r !, ~27b!

F2~r !5F1~r !22pvs. ~27c!

Note that we have kept the same sign conventions a
Recipe 1~e.g., positivev corresponds to counter-clockwis
rotation!. However, bothv (1) andk(1) have negative values

Equations~27! give the spiral frequency and shape as
function of all three parametersa, b, and« appearing in the
reaction–diffusion equations.

IV. RESULTS: SPIRAL WAVES

In this section we present various comparisons of
asymptotic results and full solutions of reaction–diffusi
equations~3! with kinetic terms~2!.

A. Frequency comparison

We begin by considering the spiral rotation frequen
Because this is a simple scalar quantity, it is possible to sh
a rather comprehensive comparison between the asymp
predictions and the actual frequencies obtained from
reaction–diffusion equations. In Fig. 3 we show frequen
contours in thea–b parameter plane for three values of«.
For each«, five contours are selected decreasing from
largest spiral frequency at that value of«. Similar frequency
landscapes have been studied by Winfree.25

As expected, one sees that for small« («50.1) the
agreement between asymptotics and full numerical solut
is very good. See also Fig. 1~c!. At moderate« («50.2) the
agreement is still reasonable. In quantitative terms, the
ymptotics predicts the true frequencies to within about 1
for the frequencies whose contours are shown. Even a«
50.271 44, which is quite a large value, the asymptot
captures the spirals which have large frequencies. The v
«50.271 44 corresponds to«n.0.02, a value used in nume
ous previous publications.

For contrast, we show in Fig. 4 a comparison betwee
the leading order frequencyv (0) and full reaction–diffusion
results at«50.2, the same as in Fig. 3~b!. The importance of
the first-order correction is evident. Note that the effect
the first-order correction is to reduce the value ofv since
v (1),0. This can also be seen in Fig. 1.

The parameter range covered in Fig. 3 encompas
most of the excitable region in which spiral waves exist
Eqs.~3!. There is a region of parameter space in which sp
waves do not exist owing to the inability of the medium
support waves.15,19,25,28,29This is known as propagation fail
ure. This region is in the upper left part of thea–b parameter
plane and its size increases with increasing«. On approach-
ing this region the medium becomes only weakly excita
and the spiral rotation frequency falls to zero; the rotat
period goes to infinity. This effect is seen in Fig. 1 as« is
increased for fixeda andb. As the frequency becomes sma
it is difficult to compute spiral solutions of the reaction
diffusion equations by our methods because spirals ro
about very large cores~hence the large rotation period!, and
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very large domains are required. As is clear from Figs. 1 a
3, our asymptotic results are not predictive for weakly exc
able media.

B. Shape comparison

We now consider how the spiral shapes obtained fr
asymptotics compare with the spirals solutions of the f
reaction–diffusion equations. There are two distinct co
parisons to be made here. First, the spiral shapes assoc
with solutions of universal equations, Eqs.~7! and ~18!, are
compared to the spiral shapes that come from using largr
approximations to these solutions, Eqs.~11! and ~22!. The
large-r approximations are used in our asymptotic recipes
it is important to assess the validity of these approximatio
Then, we compare the shapes given by our recipes to s
solutions of Eqs.~3!.

FIG. 3. Comparison of frequencyv from asymptotics at first order~solid!
and full solutions of reaction–diffusion equations~dashed! for three values
of «. Frequency contours are shown in thea–b parameter plane. The con
tour levels plotted vary with«, but at each« the contour levels for the
reaction–diffusion equations~labeled! are the same as for the asymptotic
~not labeled!.
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Figures 5 and 6 show the first comparison. The unive
equations are solved to obtainF (0)(r ) and F (1)(r ) for the
specific parameters shown in the figures. Also plotted are
approximations toF (0)(r ) and F (1)(r ) obtained from Eqs.
~11! and ~22!. For these approximations, we show the effe
of including different numbers of terms, including in ea
case the effect of one more term than we keep in our reci

Consider first the leading-order case. The short-das
curve is the Archimedean approximationF (0)(r )52k(0)r
wherek(0) is the far-field pitch or wave number of the spira
It is evident from Fig. 5 that while this single term doe

FIG. 4. Comparison of frequencyv from leading-order asymptotics~solid!
and full solutions of reaction–diffusion equations~dashed! for «50.2. The
frequency contour levels for the reaction–diffusion equations~labeled! are
the same as for the asymptotics~not labeled!.

FIG. 5. Leading order spiralF (0)(r ) ~top! and first-order correctionF (1)(r )
~bottom! from asymptotic equations. Spirals from numerical solutions of
universal equations are shown as solid. Other curves show approxima
~see text!. Parametersa51.0, b50.1. Radius520.
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capture the large-r shape of the universal solution, this a
proximation is not very good at small and intermediate v
ues of r . The long-dashed curve is the approximati
F (0)(r )52k(0)r 21/B2 ln r, which we use in our recipe
This approximation is almost indistinguishable from t
solid curve on the scale of Fig. 5. Some deviation from
solid curve can be seen in the enlargement of Fig. 6. N
that the solution is plotted from smallr (r 50.1) and yet the
divergence due to the logarithmic term has not made it
felt. Finally we show with a dashed–dotted curve the a
proximation obtained including the next term from Eq.~11!:
F (0)(r )52k(0)r 21/B2 ln r2(B/221/B3)/(Av (0)r ). On the
scale of Fig. 5 there is no effect of including this term. O
the scale of Fig. 6 it can be seen that there is a range inr for
which the term does produce a better approximation to
exact solution. However, this improvement is modest and
outweighed by the 1/r divergence asr→0. For this reason
and with a view to keep the recipes simple, we use a tw
term approximation toF (0)(r ) in Recipe 1.

Now consider the first-order case. The short-dash
curve is the Archimedean approximation, this timeF (1)(r )
52k(1)r . Again this approximation is very good at larger
but deviates from the solution of the universal solution
moderate and small values ofr . We show as a long-dashe
curve the approximationF (1)(r ) including the logarithmic
term coming from Eq.~22!. Clearly this term is useful for
obtaining a good approximation toF (1)(r ). However, unlike
for the leading-order solution, the first-order shapeF (1) is
multiplied by « in Eq. ~27b! and so in fact the contribution
from the logarithmic term at first order is not significant.
ns

FIG. 6. Same as Fig. 5 except the domain radius is 5.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the spirit of keeping the recipes simple while not unnec
sarily sacrificing accuracy, we do not include this term.

Note that the relative chirality of the spirals in Figs.
and 6 is significant. The first-order correction reduces
pitch of the leading order spiral.

Now we consider how the spiral shapes from asymp
ics, F1(r ) and F2(r ), compare with full solutions of
reaction–diffusion equations~3!. The comparison is shown
in Figs. 7 and 8 for fixed values ofa and b. In Fig. 7 we
present comparisons for the three values of« considered in
Fig. 3. Apart from choosing the phaseF0 in Recipe 2, there
are no adjustable parameters. At first order, the asymp
results capture very well the spiral shapes. By contrast,

FIG. 7. Comparison between spiral solutions from reaction–diffusion eq
tions and shapes obtained from asymptotics using Recipe 2. Theu-field
from Eqs. ~3! is shown with excited (u.0.9), quiescent (u,0.1), and
interfaces regions (0.1<u<0.9). ~a! «50.1, ~b! «50.2, and ~c! «
50.27144. Other parameters area51.0, b50.1 and the domain radius i
20.
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leading-order asymptotics shown in Fig. 8 does not capt
quantitatively the spiral shape. Note that the pitch of t
leading-order asymptotic shape in Fig. 8 is larger than tha
the full solution; the first-order terms reduce the spiral pitc

In general we find the shape predictions from the asym
totics are not as accurate as the frequency predictions. Th
so despite the generally good agreement between asym
ics and full reaction–diffusion solutions seen in Fig. 7.
quantitative example is given in the next section. The rea
why the frequency predictions are better than the shape
diction is not clear to us. It may be simply that the highe
order terms are more important for describing the sp
shape than spiral frequency. The shape functions obtaine
solutions of the leading- and first-order universal equatio
have been verified directly against solutions extracted fr
the full reaction–diffusion equations,20 so for small« there is
no question of the accuracy of the asymptotic results.
note that Keener30 has considered a correction to the leadin
order asymptotics which involves careful examination of t
core. If one looks at those results one also finds that
frequency correction is more accurate than the shape co
tion.

C. Dispersion curves

We conclude our treatment of spiral waves by consid
ing briefly an important application of the asymptotic resul
From the asymptotic recipes it is possible to derive the d
persion relation for spiral waves. This isv(k), the relation-
ship between spiral frequency and spiral pitch or wave nu
ber k. There are many equivalent ways to express t
relationship, e.g., wave speed as a function of wavelen
c(l52p/k), frequency as a function of wavelengthv(l),
etc. ~see, e.g., Refs. 6, 25, and 31!.

In Fig. 9 we show the dispersion relation asv(k) for
spirals witha in the range 0.5<a<1.2 with b50.1 and«
50.2. ~Note that this is not the dispersion curve for a plan
wave at fixed parameter values.! The points are from full
reaction–diffusion solutions where we have extracted
spiral pitchk from the solutions~e.g., Fig. 7! by fitting the
interfaces to Archimedean curvesf5kr for r .10. The
solid curve is the asymptotic prediction at first order, whe

a-

FIG. 8. Comparison between spiral solutions from reaction–diffusion eq
tions with «50.2 and shapes obtained from leading-order asymptot
Recipe 1. All parameters are as in Fig. 7~b!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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k5k(0)1«k(1). For comparison we also show the leadin
order dispersion curvev (0)(k(0)). It is again seen that at firs
order the asymptotics is in reasonable quantitative agreem
with full solutions to the reaction–diffusion equations. T
difference between the asymptotics and the full solution
primarily due to inaccuracy in the asymptotic prediction f
wave numberk; the frequency is quite accurate except fora
near 0.5~the smaller values ofv in Fig. 9!. This property of
the asymptotics has been noted at the end of Sec. IV B.

V. RECIPES FOR SCROLL WAVES

Here we extend the asymptotic results to the case
twisted scroll waves with straight filaments. Figure 10 sho
such a wave. We work in cylindrical coordinates (r ,f,z) in
which the scroll filament, or axis of rotation, is thez axis.

Solutions to the reaction–diffusion equations are ag
described by two interfaces dividing the medium into exci
and quiescent regions. In this case the interfaces are sur
parametrized by two parameters. We may take these to b
coordinates r and z, and we denoted the surfaces b

FIG. 9. Dispersion relation for spirals witha from 0.5 to 1.2 withb50.1
and «50.2. Asymptotics to first order are shown as solid curve; lead
order asymptotics are shown as dashed. Points are from solutions t
reaction–diffusion equations.

FIG. 10. Twisted scroll wave from numerical solutions of Eqs.~3!. The
isosurfaceu50.5 is shown. The scroll filament is white. The universal tw
~defined in the text! is t̃w50.4 corresponding to a twist oftw'0.35. Pa-
rameters area51.0, b50.1, «50.2.
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6(r ,z). Points on the wave back satisfy (r ,f,z)

5(r ,F2
2(r ,z),z) and similarly for the wave front.

Twist refers to the rate of change in polar angle of t
interface with distance along the interface.32,33Commonly in
excitable media this is denoted byw but to avoid confusion
with the frequencyv we shall usetw to denote the scroll
twist. We consider the case of constant twist such thattw

5dF2
6/dz is the same everywhere on the scroll surface. F

such waves, the description of the scroll surface in th
dimensions reduces to

F2
6~r ,z!5F6~r !1twz, ~28!

whereF6(r )5F2
6(r ,0). Thus we are able to describe th

solutions entirely with curves in the plane:F6(r ). The so-
lutions are understood to be parametrized by the twisttw ,
and we can seek solutions for anytw . Fortw50 we recover
the case of spiral waves.

Only minor changes are required to take into account
effect of twist. We stress only the differences with the pre
ous case of spiral waves.

A. Leading order universal equation

The result of the matched asymptotic analysis at lead
order is as follows.9,20 The wave front and wave back hav
identical shape with constant angular separation between
two. This separation is independent of the twist and thus
same as for spiral waves, Eq.~6!.

The leading-order universal equation with twist is

q
dC (0)

dr̃
1

C (0)~11C (0)2!

r̃
5 r̃ ~q1C (0)2!

2B~q1C (0)2!3/2, ~29!

where

q[11 t̃w
2 r̃ 2, ~30!

t̃w[tw /Av (0), ~31!

and C (0) and r̃ have the same definitions as in the case
spiral waves, Eqs.~8! and~9!. B is again related to the rota
tion frequency by the relation

B5~m/v (0)!3/2, ~32!

where m is model dependent and is given by Eq.~14! for
Eqs. ~2!. C (0) and B depend on twist. Hencev (0), and all
quantities depending onv (0) such asr̃ , depend on twist.

The boundary condition atr̃ 50 is again

C (0)~ r̃ 50!50.

The large-r̃ behavior ofC (0) from Eq. ~29! is

C (0)~ r̃→`!52
r̃

B
A12 t̃w

2 B22
1

B2 1OS 1

r̃ D . ~33!

1. Comments

The selection mechanism at leading order is the sam
for spiral waves at leading order: the universal equation w
have a solution with the required boundary condition a
large-r̃ behavior only for a specific~selected! value of B.
This selects the scroll rotation frequencyv (0) via Eq. ~32!.

g
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P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



es

te
th
is
n

n
sa

d

r
to

th
be

te

s—
an
ca

d

-

n.
th

f

e
n

re

ry
lu-
ec.

ave

t

s,

-

645Chaos, Vol. 12, No. 3, 2002 Asymptotics for spiral and scroll waves
The solutionC (0)( r̃ ) to the universal equation then captur
the scroll shape in universal length units. Usingv (0) the
shapeF (0)(r ) in Fife units can be recovered.

There is an added complication in the case of twis
scrolls which is not present for spiral waves. Just as
appropriate radial coordinate for the universal equationr̃
~see Sec. III B 1!, so too the appropriate universal represe
tation for the twist ist̃w given by Eq.~31!. However, the
conversion factorAv (0) between universal twist and twist i
Fife units depends itself on twist. Thus, until the univer
equation is solved, the twisttw in Fife units corresponding to
any particular value of the universal twistt̃w is not known.
For example, suppose one solves the universal equation
universal twist t̃w50.4. Only after the equation is solve
will the corresponding value of twisttw in Fife units be
known. Moreover, the value oftw will depend on model
parameters—fora51.0b50.1, the value oftw is about 0.35
~see Fig. 10!, but for other values ofa andb the value oftw

corresponding tot̃w50.4 will be different. Stated the othe
way around, from a practical point of view one wants
choose model parameters and a value of twist in Fife~or
other! units, and to then find the shape and frequency of
corresponding scroll wave. One cannot do this directly
cause one does not know how to convert the twisttw to
universal twistt̃w until the universal equation is solved.

A simple way to untangle this is as follows. First no
that from Eqs.~31! and ~32!,

tw
2

m
5

t̃w
2

B2/3.

On the right-hand side appears only universal quantitie
quantities appearing in the universal equation. The left-h
side must therefore also be universal. The left-hand side
however, be computed directly from the twisttw and model
parameters. Thus universal solutions can be readily use
given in terms oft̃w

2 /B2/3 rather thant̃w .
The important quantity isB because from this the fre

quency is given and the shape can be well approximated
the large-r̃ expression, Eq.~33!. Figure 11~a! showsB as a
function of tw

2 /m from solutions to the universal equatio
These data have been obtained by numerically solving
equation for specified values oft̃w . Then from the values o
B resulting from the solution,t̃w

2 /B2/3 has been found and
plotted but labeled by the equivalent, but more usefultw

2 /m.
The data in the figure are well approximated by

B.B01B1Ftw
2

m G1B2Ftw
2

m G2

1B3Ftw
2

m G3

, ~34!

where

B051.738, B1521.405, B250.936,

B3520.277.

2. Recipe 3

We now give a simple recipe for obtaining leading-ord
approximations to straight twisted scroll waves in reactio
diffusion Eqs.~1! or ~3!.
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Use Eqs.~13! and ~14! to find m for desired model pa-
rametersa and b. Then for any desired value of twisttw ,
find the value ofB via approximation~34!. Then with this
value ofB the leading-order frequency and scroll shape a

v (0)5m/B2/3, ~35a!

F2
(0)1~r ,z!5F02k(0)r 2

1

B2 ln r 1twz, ~35b!

F2
(0)2~r ,z!5F2

(0)1~r ,z!22pvs, ~35c!

where

k(0)5
Av (0)2tw

2 B2

B
~35d!

with F0 a constant of integration which sets the arbitra
phase of the scroll wave. Comparisons with numerical so
tions of the reaction–diffusion equations are given in S
V C.

B. First order universal equation

There is no contribution to the separation between w
front and wave back at first order:DF (1)50 as for spiral
waves in Eq.~17!. The universal equation for the straigh
twisted scroll wave is

q
dC (1)

dr̃
1 l ~ r̃ !C (1)5Dm1~ r̃ !1m2~ r̃ !, ~36!

whereC (1) andD are defined as in the case of spiral wave
Eqs.~19! and~23!, respectively, andq is defined by Eq.~30!.
Functionsl ( r̃ ), m1( r̃ ), andm2( r̃ ) are given by

FIG. 11. Dependence of the eigenvaluesB andD on twist. Points are from
solutions to universal Eqs.~29! and ~36!. Curves are polynomial approxi
mations, Eqs.~34! and ~39!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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l ~ r̃ !5
1

r̃
1 r̃C (0)

13C (0)FC (0)

r̃
2 r̃ 1BAq1C (0)2G ,

m1~ r̃ !5 r̃ ~q1C (0)2!1B~q1C (0)2!3/2,

m2~ r̃ !5
5

3

~q1C (0)2!2

r̃
.

These depend on twist throughq and through the depen
dence ofC (0) on twist.

The large-r̃ behavior ofC (1) from Eq. ~36! is

C (1)~ r̃→`!52
6DB215

3B3

r̃

A12 t̃w
2 B2

2
3DB215

B4 1OS 1

r̃ D .

The solution to the universal equation can be found
principle by integration. The solution is

C (1)~ r̃ !5Ch
(1)~ r̃ !E

0

r̃ Dm1~r!1m2~r!

Ch
(1)~r!

dr, ~37!

whereCh is the solution to the homogeneous problem giv
by

Ch
(1)5

1

qr̃
~q1C (0)2!3/2expS 2E

0

r̃ rC (0)~r!

11 t̃w
2 r2 dr D . ~38!

1. Comments

The selection mechanism at first order is the same as
spiral waves at this order: the first order shape funct
C (1)( r̃ ) given by Eq.~37! will diverge exponentially unless
D has the selected value

D52
c2

c1
,

where

ci5E
0

`

@mi~r!/Ch
(1)~r!#dr.

The value ofD now depends on twist. Figure 11~b!
showsD as a function oftw

2 /m from numerical solutions to
the universal equation at first order. The values are well
proximated by the following:

D.D01D1Ftw
2

m G1D2Ftw
2

m G2

1D3Ftw
2

m G3

, ~39!

where
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D0520.926, D150.748, D2521.052,

D350.311.

2. Recipe 4

Finally we give a recipe for obtaining leading-plus-fir
order approximations to scroll waves in Eqs.~1! or Eqs.~3!.
First use Recipe 3 to obtainv (0) andF2

(0)6 . Use Eq.~39! to
find D for the relevant values of twist and model paramete
Then calculate

v (1)5D/a, ~40a!

F (1)1~r !52k(1)r , ~40b!

where

k(1)5
6DB215

3aB3Av (0)2tw
2 B2

.

Then

v5v (0)1«v (1), ~41a!

F2
1~r ,z!5F2

(0)1~r ,z!1«F (1)1~r !, ~41b!

F2
2~r ,z!5F2

1~r ,z!22pvs. ~41c!

This final recipe gives the scroll frequency and shape a
function of twist and all three parametersa, b, and« appear-
ing in the reaction–diffusion equations.

C. Comparison for scroll waves

We present here a brief comparison between asympt
predictions and full solutions of the reaction–diffusion equ
tions for the case of twisted straight scroll waves. Figure
shows a frequency comparison throughout thea–b param-
eter plane for fixed« and t̃w , while Fig. 13 compares the
shape of a particular twisted scroll with the asympto
shape. The scrolls displayed in Figs. 10 and 13 are the sa
Figure 13 shows theu concentration at a fixedz location; all
otherz locations are equivalent apart from the rotation inf
seen in Fig. 10.

The twist chosen for the scroll in Figs. 10 and 13 cor
spond to about the upper limit of twist that would norma

FIG. 12. Comparison of frequencyv from asymptotics at first order~solid!
and full solutions of reaction–diffusion equations~dashed! for «50.2 and a
fixed value oft̃w50.4. The contour levels for the reaction–diffusion equ
tions ~labeled! are the same as for the asymptotics~not labeled!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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be of interest; the twist just slightly exceeds the value giv
rise to instability at parameter values in the caption.20

From Figs. 12 and 13 it can be seen that the asympt
predictions are good and moreover that there is little qu
tative difference between these cases and those for s
waves at the same value of«. See specifically Figs. 3 and
for «50.2.

VI. FILAMENT DYNAMICS

It is possible to use the asymptotic results to derive
plicitly coefficients in the laws for scroll filamen
dynamics.34–37 In short, the theory of filament dynamics a
tempts to describe the behavior of scroll waves in terms
the motion of scroll filaments and the rotation of wav
about these filaments. The theory is derived for the cas
scroll waves weakly perturbed from straight, untwist
scrolls. The successes and shortcomings of this theory
treated elsewhere.36–38

What interests us here is that one of the three equat
in the theory describes the change in local scroll rotat
frequency due to twist. This equation is

v5v02a1tw
2 1b1dtw /ds, ~42!

wherev0 is the frequency of the straight untwisted scro
i.e., the spiral frequency,a1 andb1 are coefficients depend
ing on the medium, anddtw /ds is the rate of change of twis
along the filament. This last term is zero when the twist
uniform. There are two equations in the theory describing
motion of the scroll filament in normal and binormal dire
tions for curved filaments. We discuss these effects bri
below.

In the derivation of Eq.~42!, a two-dimensional spira
wave with frequencyv0 is assumed to exist, and the twi
and its derivativetw anddtw /ds are taken to be small. No
assumption is made on« in the reaction–diffusion equations
While formulas exist for the coefficientsa1 and b1 , these
formulas require the adjoint eigenfunctions of a linear ope
tor defined in terms of the spiral solution. Hence they ha
never been used to obtaina1 andb1 .

FIG. 13. Comparison between twisted-scroll solutions from reactio
diffusion equations and shapes obtained from asymptotics using Reci
Quantities are shown at a fixedz location. Theu field from Eqs.~3! is
shown with excited (u.0.9), quiescent (u,0.1), and interfaces region
(0.1<u<0.9). Parameters area51.0, b50.1, «50.2, and the domain ra-
dius is 20.t̃w50.4 corresponding totw'0.35 for these value ofa andb.
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In contrast, the approach we have taken is to cons
the asymptotics of small« and to focus on the case of un
form twist: dtw /ds50. As a result, we are able to obta
explicitly v0 anda1 as expansions in«. Furthermore, we are
not restricted in the size oftw we can consider. In principle
we can obtain higher-order~in tw! corrections to Eq.~42!.

Using the recipes in this paper we obtain

v5v02a1tw
2 1O~tw

4 !, ~43!

where

v050.692m2«
0.926

a
1O~«2!, ~44!

a1520.3732«
0.748

am
1O~«2!. ~45!

The numerical factors have been obtained fromB0 , B1 , D0 ,
and D1 . Equations~43!–~45! provides simple expression
for v0 anda1 to two orders in«. Based on the comparison
already shown in this paper, they should be reasonably a
rate over a large range of model parameters~a, b, e! and for
moderate values of twist, including most cases of pract
interest. For example, for the scroll shown in Figs. 10 and
the frequency given by Eqs.~43!–~45! is v50.600, whereas
the frequency from the full solution of the reaction–diffusio
equations isv50.608. If needed, one can obtain the corre
tions at higher powers oftw in Eq. ~43! from the constants
B0 , etc., already given. For other attempts to estimate th
retically and measure numericallya1 see Refs. 36 and 39.

Finally, we consider briefly the other equations in t
theory of filament dynamics. There are two equations g
erning filament motion in the normal and binormal dire
tions. Taking into account symmetries, these equations a35

Vn5b2k,

Vb5c3k,

whereVn and Vb are the local velocities of the filament i
the normal and binormal directions,k is the local filament
curvature andb2 andc3 are coefficients which depend on th
medium. These coefficients are analogous toa1 and b1 ap-
pearing in Eq.~42!. As with those coefficients, the formula
for b2 andc3 require the adjoint eigenfunction of an operat
defined in terms of the spiral solution, and thus these coe
cients have never been computed analytically.

At the current time only the leading-order asymptotics
complete for the general case of a curved, twisted filam
At this order the asymptotics predicts thatb2 andc3 vanish,
that is that the filament motion vanishes as«→0.

We illustrate this in Fig. 14 where we showb2 as a
function of «. In this case the value ofb2 has been obtained
by numerically simulating the collapse of axisymmetr
scroll rings~see Refs. 39 and 40!. The normal velocity of the
ring is indeed found to be proportional to curvature and
proportionality gives the value ofb2 . This value goes to zero
as a function of« as expected from the leading-order asym
totics. The binormal velocity can also be found, but it
significantly smaller~in this case! and the values ofc3 are
much more uncertain than those forb2 .

–
4.
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What is intriguing here is that there is a large regime
which b2'«b2

(1) for some as yet analytically unknown valu
of b2

(1) . It can be found numerically for particular paramet
values such as those considered in Fig. 14, but it is
known in general.

This illustrates the power of the asymptotic approach
have pursued. While there seems little hope of obtaining
values ofb2 andc3 using the expressions given in Refs. 3
and 35, there clearly is some hope of finding analytical f
mulas for the first-order contributionb2

(1) and c3
(1) . This

would be a major achievement as it would give explicitly t
equations of filament motion for a considerable range of
rameter values.

VII. SUMMARY

In this paper we have given simple recipes for obtain
the frequencies and shapes of waves in a model of excit
media. The recipes apply to spiral waves and to scroll wa
with straight filament and uniform twist. They are based
asymptotic universal equations at leading and first orde
the asymptotic parameter«. The recipes are specifically de
signed to be used without further need for solving these
ferential equations. We have presented numerous com
sons between the predictions of the asymptotic recipes
full solutions of the reaction–diffusion model, and in so d
ing we have demonstrated the range of validity for the
predictions. Finally, we have discussed the connection
tween the asymptotic results and the equations of filam
dynamics. Specifically we have evaluated one of the pre
ously unknown coefficients in this theory and we have d
cussed the promise for progress in this direction.

There are many directions this work could go in t
future. One direction that probably should not be pursue
the O(«2) correction to the formulas given here. The reas
for this can be seen in Fig. 1~c!. While not all of our numeri-
cal computations show such excellent agreement with
first-order asymptotics, we have never seen a case for w
the next-order correction would appear to offer significa
improvement. The qualitatively important effect not captur
by the first-order asymptotics is the frequency drop as
system approaches the point of wave propagation failure~see
Sec. V A!. This is not anO(«2) effect. What would be very
valuable is to use, and probably extend, the work of Hak

FIG. 14. Normal-velocity coefficientb2 as a function of« for fixed model
parametersa51.0 andb50.1. The line is drawn to show the regime whe
b2 is well approximated by«b2

(1) .
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and Karma19 on the asymptotics at the point of propagati
failure to obtain a complete asymptotic description of wav
throughout parameter space.

Because the asymptotic predictions for the frequency
spiral and twisted scroll waves are particularly simple, a
because the frequency is a particularly important quan
we conclude with a summary of these predictions. Equati
~43!–~45! together with Eqs.~13! and ~14! give the fre-
quency of scroll solutions to Eqs.~3!. The units are Fife
units. Since Eqs.~1! with Dn51 have been considered ofte
in the literature, it is worthwhile recasting these formulas
the units of these equations. We have

vn5v0n
2a1twn

21O~twn
4!,

where

v0n
5

0.692m

«n
1/3 2

0.926

a
1O~«n

1/3!,

a1520.3732
0.748«n

1/3

am
1O~«n

2/3!

with

m.2.70Fvs~12vs!

a G2/3

, vs5
a

2
2b.

For small and even not so small values of«n , these remark-
ably simple formulas give the frequency of solutions of Eq
~1! and~2! as a function of all three model parameters,a, b,
and«n , and as a function of twisttwn

measured in the length
units of Eqs.~1! and ~2!. For zero twist they simplify even
further giving the frequency of spiral waves.
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APPENDIX A: COMPUTING FIRST-ORDER
UNIVERSAL FUNCTION

Here we describe a computational procedure for obta
ing the first-order universal function. This function is give
by

C (1)~ r̃ !5Ch
(1)~ r̃ !E

0

r̃ m~r!

Ch
(1)~r!

dr, ~A1!

wherem(r)5Dm1(r)1m2(r) andCh
(1)(r) is the homoge-

neous solution. See Secs. III C and V B.
For values ofr̃ between 0 and approximately 1,C (1)( r̃ )

can be found accurately by evaluating the integral using s
dard methods such as the trapezoidal rule. This proced
gives an inaccurate evaluation ofC (1)( r̃ ) for larger values of
r̃ because of the exponential behavior ofCh

(1)(r).
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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For values ofr̃ larger than order one we obtainC (1)( r̃ )
as follows. First, Eq.~A1! is rewritten as

C (1)~ r̃ !5Ch
(1)~ r̃ ! È r̃ m~r!

Ch
(1)~r!

dr,

where we have used*0
`m( r̃ )/Ch

(1)(r)dr50. Then we trans-
form the integral by lettingx512 r̃ /r:

C (1)~ r̃ !52 r̃ E
0

1
mS r̃

~12x! D
~12x!2

Ch
(1)~ r̃ !

Ch
(1)S r̃

~12x! D
dx.

This is more suitable form for findingC (1) when r̃ is of
order one and larger. The integrand is small everywhere
cept in a small neighborhood ofx50 ~corresponding tor
5`!.

To deal with the singularity atx50 we separate off the
integral over the boundary layer nearx50 and introduce
stretched coordinates in this region. Letr̃ 51/d, chooseh
such thatd3!h!1 and split this integral into two parts: on
from 0 to h and the other fromh to 1. For the first integral
introduce the stretched coordinatex̄5x/d3. This gives

C (1)~ r̃ 51/d!52d2E
0

h/d3 m~1/d~12d3x̄!!

~12d3x̄!2

3
Ch

(1)~1/d!

Ch
(1)~1/d~12d3x̄!!

dx̄

2
1

d Eh

1 m~1/d~12x!!

~12x!2

Ch
(1)~1/d!

Ch
(1)~1/d~12x!!

dx.

~A2!

A suitable choice forh is h5d2.
Thus for r̃ of order 1 and smaller we findC (1)( r̃ ) using

Eq. ~A1! and for r̃ of order 1 and larger we findC (1)( r̃ )
using Eq.~A2!. In both cases we evaluate the integrals us
the trapezoidal method.

The universal valueD is found in this same way excep
that rather than usingm in the integrand, we used separate
m1 andm2 .

APPENDIX B: FITZHUGH–NAGUMO MODEL

Because the recipes given in the paper are obtained f
universal equations, they can be applied directly to a la
class of models. As an example we consider here
Fitzhugh–Nagumo model given by the following kinet
functions:

f ~u,v !53u2u32v, g~u,v !5u2d.

To obtain predictions of the rotation frequencies from t
recipes, all we require are the~model dependent! relation-
ships between the universal eigenvaluesB and D, and the
frequenciesv (0) andv (1). The leading order recipes~Recipe
1 and Recipe 3! are unchanged with the exception thatm is
not obtained from Eqs.~13!–~14! but as12

m3/25p~32d2!/A24.

At first order the only required change in the recipes is t
rather than Eqs.~26a! and ~40a! we have
Downloaded 09 Sep 2002 to 128.122.80.143. Redistribution subject to AI
x-

g

m
e
e

t

v (1)5D/2.

Then in the units of Eqs.~1! with Dn51, the predicted fre-
quency for spiral and twisted scroll waves in the Fitzhug
Nagumo model is

vn5v0n
2a1twn

2 ,

where

v0n
5

0.692m

«n
1/3 20.463, a1520.373S 11

«n
1/3

m D ,

with m given by

m50.744~32d2!2/3.

~We have used 0.373.0.748/2.!
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