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Cookbook asymptotics for spiral and scroll waves in excitable media
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Algebraic formulas predicting the frequencies and shapes of waves in a reaction—diffusion model of
excitable media are presented in the form of four recipes. The formulas themselves are based on a
detailed asymptotic analysipublished elsewhej@f the model equations at leading order and first
order in the asymptotic parameter. The importance of the first order contribution is stressed
throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are
given for spiral waves and detailed comparisons are presented between the asymptotic predictions
and the solutions of the full reaction—diffusion equations. Recipes for twisted scroll waves with
straight filaments are given and again comparisons are shown. The connection between the
asymptotic results and filament dynamics is discussed, and one of the previously unknown
coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic
expansion. ©2002 American Institute of Physic§DOI: 10.1063/1.1494875

Propagating waves of excitation are frequently found in  expansions are made in each region. Asymptotic matching is
chemical media such as BelousexZhabontinskii reagent  then used to reduce the problem of wave propagation to the
and in biological media such as nerve cells and cardiac motion of a free-boundary separating excited and quiescent
muscle. In two space dimensions these waves commonly (unexcited regions of the medium. In this way the pattern
take the form of rotating spirals. In three dimensions  selection problem becomes similar to a variety of other in-
these waves can take quite exotic forms, but commonly terfacial pattern formation problems such as solidification

the underlying spatial structure is that of a scroll. The  fronts and multiphase flot

observation of these waves in an ever increasing number Recently we reported preliminary results on the exten-
of situations presents a range of fundamental questions sion of the free-boundary approach beyond leading order in
concerning their selection, dynamics, and biological func- the small parametéP.As we shall show throughout this pa-
tion. The focus of this paper is the issue of pattern per, the extension to next order in the small parameter pro-
selection—specifically how results from asymptotic analy- vides accurate predictions in large parameter regions which
ses of model reactiordiffusion equations lead to accu- have hitherto been unaccessible analytically. The purpose of
rate predictions for the shape and rotation frequency of  this work is threefold:(1) to clarify terms and concepts
waves in homogeneous excitable media. which are not given precise meanings in the literature, in part

because until the recent extension of asymptotics to first or-

der, such precision has not been requir€];to show, by
I. INTRODUCTION means of simple algebraic recipes, how asymptotic results
can be used in a variety of condition®) to give a fairly

Rotating spiral and scroll waves are a common occur
rence in two- and three-dimensional excitable médi@ne
of the basic issues for such waves is the pattern SE|eCti°;5‘artial differential equations.
problem: In a homogeneous medium free from defects, what
selects the rotation frequency and the shape of the waves and
how can these properties be predicted from underlying equa-
tions? This problem has been considered by a number gl BACKGROUND
authors over the yeafs? Either directly or indirectly the A. Model equations
approach is always to exploit the inherent scale separation in
excitable media. The time scale of excnagon is vast!y ShorteFeaction—diffusion model of excitable med&r*
than that of recovery. As a result, the regions of rapid change
in the medium are very small compared with typical length au/atnanVﬁquf(u,v)/sn,
scales, e.g., the wavelength, of the pattern.

The most complete progress on pattern selection in ex- duldta=g(u,v).
citable media has been made by addressing the freerhe parametes, is small.

‘comprehensive comparison, over a range of conditions, of
the results of asymptotic predictions with full solutions of

We begin by considering a standard two-species

boundary problem first proposed by Fffé&21213.16.17.2he We shall consider the following specific functions mod-

medium is divided into appropriate regions and appropriateling reaction kinetics:

+
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g(u.)=u-v, (2b) T T T

where the parameteessandb control the excitability thresh-
old and duration in the model. The functioh has an a
N-shaped nulicline with two stable branches. It is not neces-
sary thatf be a cubic nonlinear function as in EQa), but
this is the easiest case to consider. The functjde linear, T AT
and while this is also not required, it is the simplest case. For 0 0 0.01 002 003 004 005
concreteness we shall consider only reaction king@gsn
this paper; however, the analysis applies equally to all simi-
lar models, such as the classical Fitzhugh—Nagumo equa-
tions. ForD,=1 the units in Eqs(1) are those commonly
used for this model.
Equations(1) are written in a “laboratory” or “natural”
system of unit§denoted by the subscrip). Equations com-
ing from physiology might be written in such a form prior to
any rescaling. The characteristic time scaleua$ fast, ow-
ing to the factor 1¢,, in Eq. (1a), while the characteristic
time scale ob is order one. There is not a single best choice
of units for the equations or even one choice for what might
be considered appropriate “laboratory” units. Winfréepr
example, has considered a number of scalings for the
reaction—diffusion equations, each corresponding to a par- o
ticular choice of length and time units. For our purposes Eqs.
(1) is a sufficient example. We need only one other particular
scaling of the equations which we explain momentarily.
Consider the behavior of spiral-wave solutions of Egs. 0.1 0.2 0.3 0.4
(1) as the value of, is reduced to zero. One finds that in the €
units in which Eqgs(1) are written, the spiral frequenay,
diverges to infinity. This is shown in Fig. 1 for a typical set FIG. 1. Spiral frequency as a function of the small parameter in @gsnd

.(3) with a=1.0, b=0.1. Points are from numerical solutions to the

of parameter values. Simultaneously, it is found that the SPlfeaction—diffusion equations. Dotted curves are the leading order, i.e., Fife-

ral wavelength goes to zero ag— 0 (not shown. However, Jimit, asymptotic predictions. Solid curves are the asymptotic predictions
there is freedom in the choice of length and time units inincluding the first-order terms considered in this pagar.The divergence

which to write the equations In general other choices WiIIOf the frequency, measured in “laboratory” or “natural” units, as the small
) ! parameter goes to zer@) Same ada) except on a log—log scale. The

res_ult in the frequeng:y either diverging '_[O 'n_f'mty or else leading-order asymptotic prediction is a straight line with slep®/3. (c)
going to zero as epsilon goes to zero. Likewise, the waverrequency in Fife units showing the finite limit obtained @s>0. The
length will not remain finite and nonzero as goes to zero leading-order plus first-order asymptotic prediction is the straight line.

in general.

It was Fifé® who first proposed the appropriate choice of
units such as to give finite, nonzerdrequency and wave-
length ase goes to zero. The change of units is given in It is necessary here to make precise certain terms which
Table I. The small parameter, is also rescaled for conve- appear frequently in the literature, but which are not always
nience. Reaction—diffusion equatiofs) rewritten in these given the precise meanings that we require. These terms are
units become associated with the name Fife and involve the small epsilon
behavior of solutions to the reaction—diffusion equations.

log(w,)

[=]

B. Fife terms

ulat=V2u+f(u,v)le? (33
1. Fife limit
dvldt=eg(u,v). (3b) By the Fife limit we shall mean the limiting value of

. o . solutions of Eqs(3) ase—0. For example, the value(®
For a perturbation analysis in powers ofit is normal to as(3) ase— P

multiply through the first equation by?. However, for nu-
merical work it is better to consider the equations as givermrABLE I. Relationship between “laboratory” or “natural” units and Fife
here. In addition, in this form ones see directly the differenceunits. For completeness, frequeneyand wavelength are included.

with Egs.(1).

In these equations, as in Eqd), e=0 is a singular Natural Fie
parameter value and is not obtainable. However, unlike for sn’l’GDn’l’/%(n = X
Egs.(1), spiral solutions to Eqg3) approach a sensible limit eglalt,g - t
ase goes to zero. See, for example, Figc)lshowing the sl,ﬁar; _
approach to a finite, nonzero frequency for spiral solutions to 8;1/6Dn—r1l2)\: N

Egs.(3).
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illustrated in Fig. 1c) is the spiral frequency in the Fife limit. ingly, despite the large interest in the Fife scaling, results are
The Fife limit corresponds to values at leading order inalmost nowhere reported directly in Fife units.

asymptotic expansions in the small parameter ¢, . Another important feature seen in Fig. 1 is that the Fife
limit itself does not provide an accurate quantitative predic-
2. Fife scaling and Fife units tion of wave properties. That is, the Fife regime is not very

In the literature the ternfife scalingis used to mean large.(The exact size will be model and parameter dependent

two closely related things. The first is the particular choice of2nd May be larger in some cageBrequencies and other
units in Table | for which solutions are finite asgoes to quantities are of the correct magnitude, but otherwise are not

zero. For example, Eq€3) are said to be the reaction— guantitatively accurate. HoweV(_ar, as the solid curves _in Fig.
diffusion equations written in the Fife scaling. To avoid con—l,ShOWj an asymptotic expansmnlto next orttendgrs n
fusion, we shall say Eqs3) are written inFife units Fife unit9 is accurate over a con§|derable range in epsilon.
The other meaning of Fife scaling is as follows. Know- AL the.upper end of the range epsilon shovyn in Fig. 1, vyherg
ing the Fife limit of Egs.(3), that is the leading-order the spiral frequepcy begin to decrease rapidly, the medium is
asymptotic result in Fife units, it is possible to deduce the®lY We.akly _excnable. The frequency falis to Z€ro and be-
leading-order behavior of spirals in other systems of unitsY°"d this point the medium does not support spiral waves

Consider, for example, the spiral frequency. In the naturaiS€€ Refs. 15, 19, 25, 28, and)29

units of Egs.(1), we have directly by change of units that | 'Il'hroug_rfwout the bu(;k of th_z paper we shall work exclu-
won=e- Y4 ase, 0. The leading-order scaling law SIVely in Fife units and consider asymptotic expansions to

for the frequency is thus)n~sn’1’3. Such a scaling law is first order ine. At the end we return to the units of Eq4).
often referred to as Fife scaling. It is implied immediately

fro.m the chgnge of units in Table .I .and.the _fapt that them_ SPIRAL RECIPES
spirals solutions of Eq93) have a finite(Fife) limit as &

—0. The goal of the selection problem is to find the rotation
frequency and shape of spiral waves as a function of the
3. Fife regime parameters appearing in E@8), or equivalently Eqs(1). In

practice this is accomplished via matched-asymptotic expan-
sions. In this section we review equations obtained
(elsewher&®*?°using such techniques. We do not concemn
ourselves with the details of the derivations. Instead we fo-
cus on the key ideas which are important fasing the
asymptotic results. In particular, we provide procedures for
obtaining approximations to the spiral shape and frequency

Over the years there has been considerable interest in theithout further need for solving any differential equations.
asymptotic analysis of spiral waves at leading order in epsiA | di
lon (e.g., Refs. 6, 8, 9, 12, 13, and 16+1%hese analyses " ngredients
give the Fife limit and the associated Fife scaling, for ex-  We consider spirals which are rigidly rotating at a con-
ample, the relationship)n~srjl’3. stant frequencyw. We work with polar coordinatesr (¢)

Attempts have been made to verify this scaling throughbased on the center of spiral rotation and consider solutions
direct time-dependent numerical simulations of the reaction-in a corotating frame of reference in which the spiral is a
diffusion equationd??® Typically such verifications have steady state. The spiral shape is described by two curves, a
been based on log—log plots such as shown in Fig).1 wave front and a wave back given by the functiehs(r)
Figure 1, which is an expanded presentation of the data firsind® ~(r), respectively. Points on the wave back are repre-
presented in Ref. 20, is the most complete verification of thesented parametrically by {¢=® ~(r)) and similarly for the
Fife limit and associated Fife scaling to date. It covers awave front. Together, the two curves divide the domain into
substantial range of epsilon down to quite small values. Théhe excited and quiescent regions.
solutions to the reaction—diffusion equations have been com- The wave front and wave back actually represent thin
puted using Newton’s method rather than by time-dependerihterfaces in which the fast variable makes a rapid change
simulations?®%’ between the quiescent value=0 and the excited valua

The first thing to note about Fig. 1 is that working di- =1. Only on the outer asymptotic scale are the interfaces
rectly in Fife units is the best approach to understanding thene-dimensional curves. The transition between0 andu
behavior of spiral waves at small This is true in large part =1 must be resolved on an inner asymptotic scale. Where
because quantities have simple whole-power expansions ihe wave front and wave back come together at the center of
g, .0, 0=0®+ewM+---. Working in units other than rotation there is a small asymptotic region, the core, which
the Fife units tends to obscure the behavior as epsilon goes taust be resolved on an inner scale.
zero and analyses based on log—log plots are not optimal. In the asymptotic derivation, the different regions are
For example, the existence of a finite Fife limit is well sup-written in appropriate coordinates, solutions are sought in
ported by the data for only>0.15 in Fig. 1c), whereas the powers ofe, and inner and outer solutions are matched to
existence of Fife scalingslope—1/3) in Fig. 1(b) is not well ~ obtain a complete asymptotic solution. Our only concern
supported by the equivalent range, lgg&—2.5. Surpris- here is the final results on the outer scale. In particular, our

Finally we define thé-ife regimeas the range of epsilon
for which the Fife limit is a useful approximation. This is a
matter of opinion and will depend on model parameters i
general.

C. Discussion
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The boundary condition &t=0 for Eq.(7) is
vO(r=0)=0, (10)

while the physically relevant large-behavior of ¥ (), ob-
tained by expanding Ed7) in inverse powers Of, is

T 1 N B 1\1
B B? |2 B¥T
This expression is particularly important because it captures
the essential shape of the spiral away from the center.

Finally, the eigenvalu® appearing in Eq(7) is related
to the leading order frequenay® via

_ (0)y32
FIG. 2. Sketch of the spiral geometry and coordinates. The spiral is de- B (,u,/w )™ (12

scribed by the two interfaces: a wave frabt (r) and a wave bacl® ~(r). Whel’e,u depends on the particular model kinetics and param-
These interfaces separate the medium into excited and quiescent regions

The spiral rotates with angular frequenay Positive  corresponds to eters. For Eqs(2) we have

Excited

PO(F—o0)=— +0

1
7_2) . (1

Quiescent

counter-clockwise rotation. vS=al2—b, (13
wP=v2mvs(1-v9)/a. (14
interest is in the rotation frequency and interface shape rep-
resented by theig expansions 1. Comments
0=+ oM+ (4) Equation(7) is universal because it is independent of

N N N details of the reaction kinetics and model parameters for a
()= (1) + () +--. ) Jarge class of modef®!2The model and parameter specific
We consider the results for the first two orders: leading ordergetails are contained in the relationship between the eigen-
%, which is equivalent to the Fife limit, and first order. valueB and frequencyn(®), and in the relationship between
We consider only the chirality shown in Fig. 2, becausethe universal coordinaté and the radial coordinate. It
it corresponds naturally to a positive rotation frequency. Spishould be realized that time and space scalings have already
rals with the opposite chirality can be obtained trivially for been accounted in Eq&) from which Eq.(7) is derived; the
those found below. further multiplication ofr by the square root of a frequency
(a pure numberis simply how model-dependent details are
accounted for in a universal way.
The selection mechanism for spiral patterns at leading
At leading order solutions can be found for which the order is as follows. The universal equation is a nonlinear
wave front and wave back are identical in shape with a coneigenvalue problem. It has a unique solution with the re-
stant angular separation between the trmdependent of quired boundary condition at zero, EG.0), and the correct
r).>1220For example, the wave front and wave back drawnbehavior at infinity, Eq(11), only for a specific value oB,

B. Leading-order recipe

in Fig. 2 are of identical shape. the selected value. For any other value Bfthe solution
The angular separation between the front and back & (®)(F) changes sign and goes to infinity 850)(F— )

given by =+T/B, cf. Eq.(11), possibly by going through a singular-
ADO= DO+ O =S ® ity at finite¥. The result is the selected value Bf®%12

wherev® is the stall concentration aof: the value ofv at a B=17383.., (15
planar interface such that the velocity of the interface is zeroand the universal shape functidn©)(¥).
The value depends on the particular model kinetics and pa- From the selected value &, the selected leading order

rameter values, and is given below for E¢®). frequency »© is given via Eq.(12). The selected spiral
The interface shape and frequency obey a single univeishape®© comes from the solution?(®) itself. For most
sal equation: purposes all that is required is the valueBaind the large-
AU g1 p()2) r limit (11). From Fhesg the leading order shape can be found
+ _ =T(1+ P2 to a good approximation.
dr §
—B(1+ w0232 (1) 2. Recipe 1

where W©)(¥) is the universal shape function describing  The following is a recipe for obtaining leading-order ap-
both interfaces aritlis the universal radial coordinate. These proximations to spiral waves in Eq&) with kinetics given

are defined by by Egs.(2).
¥ ONF)=Fdd O+ /dF=F dd©/dF, ®) Use Egs(13) and(14) find v° and « for desired model
parametera andb. Then from the value oB in Eq. (15)
T=JoOr. 9 obtain the leading-order frequency and spiral shape via
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w©@=p/B%3 (163 Solutions(20) and (21) can easily be verified by direct sub-
. stitution.
DO (1) =D —kOr — —Inr . 16b One may obt.am the shape away from the core by using
(r)=2oo gz’ (160 the largeF behavior of¥ () from Eq. (18),
DO~ (1)=PO* (1) = 2705, 160 6DB2+5
(r) (r)—2m (160) YTy = POBTFE
where 3B
[ 3DB2+5 1
k(O):T’ (160) _T+O =. (22)

and whered, is a constant of integration which sets the  Finally, the eigenvalueD is proportional to the first-
phase of the spiral. Note that by our conventigig. 2), the  order frequency. This proportionality is model depen-
spiral frequency is positive. We also defik€) to be posi- dent. For Egs(2) we have
t?ve. The fact thgd(l)*/dr is negatiye for spirals yvith posi- D=aw®. (23)
tive frequencyw is accounted for with the minus signs in Eq.
(1_6b). _Comparlsons with numerical solutions of E3) are 1. Comments
given in Sec. IV.
The selection mechanism of the shape and frequency at
first order is different from the selection at leading order. At
C. First-order recipe ﬂrst order the selef:tiqn is as fo!lows. .Efecauls@) is nega-
. tive, the exponential in Eq20) is positive, and hence the

matched asymptotic analy$ids that at orde the front and HenceW (1)(F) from Eq.(21) will also diverge exponentially
back interfaces again have the same shape. The contributiQfpjess

to the angular separation at first order is zero,
APD=pD+ _pMD)-=0. (17

The universal equation for the first-order contribution to
the interface shape and frequency is

This selects the value @. The selected value can be writ-

ten
p)
T +1(T) WD =Dmy(T)+my(T), (18) D:_g,
c
where the universal shape function at first order is defined by h !
where
YD) =aw@F ddW/dF=aw@F ddM-/d¥. (19
The universal coordinafé is defined as beforfEq. (9)]. Ci=J [mi(p)/ TP (p)]1dp.
The functions appearing in Eq18) depend on the 0
leading-order shap® ()(F) and are given by Given the value oD, the shape functio® ()(F) is found by
1 the integrals in Eqs(20) and (21). In practice all the inte-
[(F)= —+ TwO) grals must be computed numericalsee Appendix A One
finds the value oD to be
v _—
+ 3y = T4+ B\/Wﬁ ' D=-0.9261... (25
my(F) =F(1+W(©2) 4 B(1+W(©)2)32, 2. Recipe 2
5 (14 W(0)2)2 Here we give a recipe for obtaining leading-plus-first-
my(F) == 3 order approximations to spiral waves in E¢3). with kinet-
§

ics given by Eqgs(2).
The universal equation at first order is linear in the shape ~ First use Recipe 1 to obtaia(® and ®(®*. Then cal-
function. The solution is found by first finding the solution culate

\Ifﬁ,l) to the homogeneous problem. The solution is wM=D/a, (263
1 T
\Ifﬁl):?(lJr‘lf(O)z)S’zex;{ - fop\lf(o)(p)dp . (20 O (r)=—kMr, (26b)
where

Then the solution of Eq18) which is finite at the origin

is given by k(1)=6mji. (260
vOT) =wHT) f g, (2D e
O
v (p) Then
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0=0+go®), (279 02
OH(r)=dOF(r)+edMD(r), (27b)
O (r)=d"(r)—2mvs. (270

. . . 0.1
Note that we have kept the same sign conventions as in

Recipe 1(e.g., positivew corresponds to counter-clockwise

rotation. However, bothw® andk® have negative values.
Equations(27) give the spiral frequency and shape as a

function of all three parametees b, ande appearing in the 0

reaction—diffusion equations.

[«]

(a)
0.2

IV. RESULTS: SPIRAL WAVES

In this section we present various comparisons of the
asymptotic results and full solutions of reaction—diffusion 0.1
equationg3) with kinetic terms(2).

A. Frequency comparison

We begin by considering the spiral rotation frequency.
Because this is a simple scalar quantity, it is possible to show 0
a rather comprehensive comparison between the asymptotic
predictions and the actual frequencies obtained from the
reaction—diffusion equations. In Fig. 3 we show frequency
contours in thea—b parameter plane for three values ©f
For eache, five contours are selected decreasing from the
largest spiral frequency at that value ©ofSimilar frequency
landscapes have been studied by Winfree. 0.1
As expected, one sees that for small(¢=0.1) the
agreement between asymptotics and full numerical solutions
is very good. See also Fig(d. At moderates (¢=0.2) the
agreement is still reasonable. In quantitative terms, the as-
ymptotics predicts the true frequencies to within about 10% 0
for the frequencies whose contours are shown. Evea at ©
=0.27144, which is quite a large value, the asymptotics
captures the spirals which have large frequencies. The valuaG. 3. Comparison of frequenay from asymptotics at first ordesolid)

£=0.271 44 corresponds tg,=0.02, a value used in numer- and full solutions of reaction—diffusion equatiofdasheg for three values
ouS previous publications of . Frequency contours are shown in theb parameter plane. The con-

. . . tour levels plotted vary withe, but at eache the contour levels for the
For _ContraSt' we show in Figt a comparison t_)etW_een reaction—diffusion equationdabeled are the same as for the asymptotics
the leading order frequenay(®) and full reaction—diffusion  (not labeled

results at =0.2, the same as in Fig(I3. The importance of

the first-order correction is evident. Note that the effect of . . . .
the first-order correction is to reduce the valuewtince V€Y large domains are required. As is clear from Figs. 1 and
»D<0. This can also be seen in Fig. 1. 3, our asymptotic results are not predictive for weakly excit-

The parameter range covered in Fig. 3 encompasseas.ble media.
most of the excitable region in which spiral waves exist in
Egs.(3). There is a region of parameter space in which spira
waves do not exist owing to the inability of the medium to We now consider how the spiral shapes obtained from
support waves$>192528.29Thjs is known as propagation fail- asymptotics compare with the spirals solutions of the full
ure. This region is in the upper left part of the-b parameter reaction—diffusion equations. There are two distinct com-
plane and its size increases with increasingdn approach- parisons to be made here. First, the spiral shapes associated
ing this region the medium becomes only weakly excitablewith solutions of universal equations, Eq%) and (18), are
and the spiral rotation frequency falls to zero; the rotationcompared to the spiral shapes that come from using large-
period goes to infinity. This effect is seen in Fig. 1aags  approximations to these solutions, Eq$l) and (22). The
increased for fixe@d andb. As the frequency becomes small large+ approximations are used in our asymptotic recipes so
it is difficult to compute spiral solutions of the reaction— it is important to assess the validity of these approximations.
diffusion equations by our methods because spirals rotat€hen, we compare the shapes given by our recipes to spiral
about very large corehence the large rotation peripcand  solutions of Eqs(3).

o

(]

P. Shape comparison
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FIG. 4. Comparison of frequenay from leading-order asymptoti¢solid)
and full solutions of reaction—diffusion equatioftashed for e =0.2. The
frequency contour levels for the reaction—diffusion equatidalseled are
the same as for the asymptotig®t labelegl.

Figures 5 and 6 show the first comparison. The universal

equations are solved to obta(®(r) and ®)(r) for the

specific parameters shown in the figures. Also plotted are the

approximations tab(©)(r) and ®®)(r) obtained from Egs.

(11) and(22). For these approximations, we show the effect

of including different numbers of terms, including in each

case the effect of one more term than we keep in our recipes.
Consider first the leading-order case. The short-dashed

curve is the Archimedean approximatiah(®)(r)=—k©r
wherek(® is the far-field pitch or wave number of the spiral.
It is evident from Fig. 5 that while this single term does

FIG. 5. Leading order spirab()(r) (top) and first-order correctio®})(r)
(bottom from asymptotic equations. Spirals from numerical solutions of the

D. Margerit and D. Barkley

FIG. 6. Same as Fig. 5 except the domain radius is 5.

capture the large-shape of the universal solution, this ap-
proximation is not very good at small and intermediate val-
ues of r. The long-dashed curve is the approximation
®O(ry=—-k©r—-1/B?Inr, which we use in our recipe.
This approximation is almost indistinguishable from the
solid curve on the scale of Fig. 5. Some deviation from the
solid curve can be seen in the enlargement of Fig. 6. Note
that the solution is plotted from small(r =0.1) and yet the
divergence due to the logarithmic term has not made itself
felt. Finally we show with a dashed—dotted curve the ap-
proximation obtained including the next term from Efjl):
OO(r)=—kOr —1/B2Inr—(B/2— 1/B%)/(\©r). On the
scale of Fig. 5 there is no effect of including this term. On
the scale of Fig. 6 it can be seen that there is a rangean
which the term does produce a better approximation to the
exact solution. However, this improvement is modest and is
outweighed by the t/divergence as—0. For this reason
and with a view to keep the recipes simple, we use a two-
term approximation tab(®)(r) in Recipe 1.

Now consider the first-order case. The short-dashed
curve is the Archimedean approximation, this tidé!)(r)
=—kMr. Again this approximation is very good at large
but deviates from the solution of the universal solution at
moderate and small values of We show as a long-dashed
curve the approximatiod®!)(r) including the logarithmic
term coming from Eq(22). Clearly this term is useful for
obtaining a good approximation tb(*)(r). However, unlike
for the leading-order solution, the first-order shap€") is

universal equations are shown as solid. Other curves show approximatiof®Ultiplied by & in Eq. (270 and so in fact the contribution

(see text Parametera=1.0, b=0.1. Radius- 20.

from the logarithmic term at first order is not significant. In

Downloaded 09 Sep 2002 to 128.122.80.143. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 12, No. 3, 2002 Asymptotics for spiral and scroll waves 643

(a)

FIG. 8. Comparison between spiral solutions from reaction—diffusion equa-
tions with £=0.2 and shapes obtained from leading-order asymptotics,
Recipe 1. All parameters are as in FigbjZ

leading-order asymptotics shown in Fig. 8 does not capture
quantitatively the spiral shape. Note that the pitch of the
leading-order asymptotic shape in Fig. 8 is larger than that of
the full solution; the first-order terms reduce the spiral pitch.
In general we find the shape predictions from the asymp-
totics are not as accurate as the frequency predictions. This is
so despite the generally good agreement between asymptot-
ics and full reaction—diffusion solutions seen in Fig. 7. A
gquantitative example is given in the next section. The reason
why the frequency predictions are better than the shape pre-
diction is not clear to us. It may be simply that the higher-
order terms are more important for describing the spiral
shape than spiral frequency. The shape functions obtained as
solutions of the leading- and first-order universal equations
have been verified directly against solutions extracted from
the full reaction—diffusion equatiorf8 so for smalls there is
no question of the accuracy of the asymptotic results. We
note that Keenéf has considered a correction to the leading-
order asymptotics which involves careful examination of the
core. If one looks at those results one also finds that the
frequency correction is more accurate than the shape correc-
tion.
FIG. 7. Comparison between spiral solutions from reaction—diffusion equa-

tions and shapes obtained from asymptotics using Recipe 2.uiffedd . .
from Egs. (3) is shown with excited >0.9), quiescent<0.1), and - Dispersion curves

interfaces regions (01u=<0.9). =0. =0. ; :
Ii0.27144. O%her pa(rameters guer(i).ozsbfol.,l gjn)d iheodzovmzadrg:c)liuz is . We concll_Jde our treatm.em.Of spiral waves by.con5|der_
20. ing briefly an important application of the asymptotic results.
From the asymptotic recipes it is possible to derive the dis-
persion relation for spiral waves. This égk), the relation-
the spirit of keeping the recipes simple while not unnecesship between spiral frequency and spiral pitch or wave num-
sarily sacrificing accuracy, we do not include this term. ber k. There are many equivalent ways to express this
Note that the relative chirality of the spirals in Figs. 5 relationship, e.g., wave speed as a function of wavelength
and 6 is significant. The first-order correction reduces the(\=2#/k), frequency as a function of wavelengihi(\),
pitch of the leading order spiral. etc. (see, e.g., Refs. 6, 25, and)31
Now we consider how the spiral shapes from asymptot- In Fig. 9 we show the dispersion relation agk) for
ics, ®*(r) and ® (r), compare with full solutions of spirals witha in the range 0.5a<1.2 with b=0.1 ande
reaction—diffusion equation&). The comparison is shown =0.2. (Note that this is not the dispersion curve for a planar
in Figs. 7 and 8 for fixed values & andb. In Fig. 7 we wave at fixed parameter valugShe points are from full
present comparisons for the three values @onsidered in  reaction—diffusion solutions where we have extracted the
Fig. 3. Apart from choosing the phadg, in Recipe 2, there spiral pitchk from the solutionde.g., Fig. 7 by fitting the
are no adjustable parameters. At first order, the asymptotimterfaces to Archimedean curves=kr for r>10. The
results capture very well the spiral shapes. By contrast, theolid curve is the asymptotic prediction at first order, where
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08 ——— T ®,(r,z). Points on the wave back satisfyr,,z)
=(r,®, (r,z),z) and similarly for the wave front.

(&) - - Twist refers to the rate of change in polar angle of the

i "7 | interface with distance along the interfatt€>Commonly in

04 J i excitable media this is denoted ky but to avoid confusion

with the frequencyw we shall user,, to denote the scroll

o twist. We consider the case of constant twist such that

=dd,/dzis the same everywhere on the scroll surface. For

such waves, the description of the scroll surface in three

0 0.3 0.6 dimensions reduces to

D5 (r,2)=d" (1) + 7,2, (28)
FIG. 9. Dispersion relation for spirals with from 0.5 to 1.2 withb=0.1 + _oa o+ .
and ¢=0.2. Asymptotics to first order are shown as solid curve; IeadingWhere(D (r)—d)z (r,O). Thus we are able to describe the

order asymptotics are shown as dashed. Points are from solutions to ttROlutions entirely with curves in the plan®:(r). The so-
reaction—diffusion equations. lutions are understood to be parametrized by the twjst
and we can seek solutions for any. For 7,,=0 we recover
O i ) ~ the case of_ spiral waves. _ _
k=k™+ek'™. For comparison we also show the leading-  only minor changes are required to take into account the

order dispersion curve®(k(%)). Itis again seen that at first effect of twist. We stress only the differences with the previ-
order the asymptotics is in reasonable quantitative agreemegl;s case of spiral waves.

with full solutions to the reaction—diffusion equations. The ] ] .

difference between the asymptotics and the full solutions i€\ Leading order universal equation

primarily due to inaccuracy in the asymptotic prediction for  The result of the matched asymptotic analysis at leading

wave numbek; the frequency is quite accurate exceptdor order is as follows:?° The wave front and wave back have

near 0.5(the smaller values ab in Fig. 9). This property of  identical shape with constant angular separation between the

the asymptotics has been noted at the end of Sec. IVB.  two. This separation is independent of the twist and thus the
same as for spiral waves, E@).

V. RECIPES FOR SCROLL WAVES The leading-order universal equation with twist is

Here we extend the asymptotic results to the case of d‘l’(o)+ VO (1+ w02 —F(q+ V(02
twisted scroll waves with straight filaments. Figure 10 shows dr T -
such a wave. We work in cylindrical coordinateas ¢,z) in
which the scroll filament, or axis of rotation, is tkeaxis.

Solutions to the reaction—diffusion equations are agairwhere
described by two interfaces dividing the medium into excited a2
and quiescent regions. In this case the interfaces are surfaces q=1+7,1% (30
parametrized by two parameters. We may take these to be the Fu=Tu! o, (31)

coordinatesr and z, and we denoted the surfaces by
and ¥ () and¥ have the same definitions as in the case of

spiral waves, Eqg8) and(9). B is again related to the rota-
tion frequency by the relation

B=(u/0(®)%?, (32

where i is model dependent and is given by Ed4) for

Egs.(2). ¥ andB depend on twist. Hence®, and all

quantities depending oa'®) such a§, depend on twist.
The boundary condition &=0 is again

YO (F=0)=0.

—B(q+Ww®2)32 (29

The large¥ behavior of ¥ (%) from Eq. (29) is

T 1
PO(F—o0)=— E‘/ —7B2— g2+0

1. Comments

1
Ar—,) . (33

The selection mechanism at leading order is the same as
_ _ _ for spiral waves at leading order: the universal equation will

FIG. 10. Twisted scroll wave from numerical solutions of E¢. The hav lution with the r ired boundar ndition and

isosurfaceu= 0.5 is shown. The scroll filament is white. The universal twist ave a solutio e require ounadary co on a

(defined in the teytis 7,,=0.4 corresponding to a twist of,~0.35. Pa- Iarge? behavior only for a _Specifi(ﬁselecteﬂi \_/a|Ue of B.
rameters ara=1.0, b=0.1, £=0.2. This selects the scroll rotation frequenay® via Eq. (32).
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The solution¥ (°)(T) to the universal equation then captures 5

the scroll shape in universal length units. Usiad® the

shape®(®)(r) in Fife units can be recovered. B
There is an added complication in the case of twisted

scrolls which is not present for spiral waves. Just as the

appropriate radial coordinate for the universal equation is

(see Sec. llIB}, so too the appropriate universal represen-

1.5

tation for the twist is7,, given by Eq.(31). However, the 1

conversion factor/w™ between universal twist and twist in @ e —
Fife units depends itself on twist. Thus, until the universal 0.6 T
equation is solved, the twist, in Fife units corresponding to L -
any particular value of the universal twig, is not known. D L .

For example, suppose one solves the universal equation for L -
universal twist7,=0.4. Only after the equation is solved
will the corresponding value of twist,, in Fife units be
known. Moreover, the value of,, will depend on model
parameters—foa=1.0b=0.1, the value of,, is about 0.35 h -

(see Fig. 10 but for other values oh andb the value ofr, S i N I B
corresponding tar,=0.4 will be different. Stated the other 0 0.25 0.5 0.75 R 1
way around, from a practical point of view one wants to (b) T/ 1

choose model parameters and a value of twist in Fafle FIG. 11. Dependence of the eigenvallBeandD on twist. Points are from
othep units, and to then find the shape and frequency of theolutions to universal Eq€29) and (36). Curves are polynomial approxi-
corresponding scroll wave. One cannot do this directly bemations, Eqs(34) and(39).
cause one does not know how to convert the twistto
universal twistr,, until the universal equation is solved.

A simple way to untangle this is as follows. First note

that from Eqs(31) and (32) Use Egs.(13) and(14) to find u for desired model pa-

rametersa andb. Then for any desired value of twist,,

T&v ;3\/ find the value ofB via approximation(34). Then with this
;= B2 value ofB the leading-order frequency and scroll shape are
w®=pu/B? (353

On the right-hand side appears only universal quantities—

guantities appearing in the universal equation. The left-hand 1

side must therefore also be universal. The left-hand side can, ®%*(r,z)=d,—k©r— gln r+ 7,2, (35b)
however, be computed directly from the twigt and model

parameters. Thus universal solutions can be readily used if DO (r,2)=dO" (r,2) - 2705, (350

given in terms of72/B?" rather thart,, .
The important quantity i because from this the fre- where
guency is given and the shape can be well approximated by OETY)
the large¥ expression, Eq(33). Figure 11a) showsB as a ko) = V& wB (350
function of rfv/,u from solutions to the universal equation. B

These data have been obtained by numerically solving thﬁ/ith &, a constant of integration which sets the arbitrary

Equanolr_l forfspecn?}ed velllu_es f’gv/-BZ,Qer? frogn thefvalu des O; phase of the scroll wave. Comparisons with numerical solu-
resulting from the so Ut'omfw as been tound and +,ns of the reaction—diffusion equations are given in Sec.
plotted but labeled by the equivalent, but more useﬁulu. VC

The data in the figure are well approximated by

7_2 7_2 2 7_2 3
W w
B=Bo+By — | +B2— 7 +Bs _} : (34 B First order universal equation
where There is no contribution to the separation between wave
front and wave back at first ordeA®)=0 as for spiral
By=1.738, B;=—-1.405, B,=0.936, waves in Eq.(17). The universal equation for the straight
twisted scroll wave is
By=—0.277.
dw® W
+1(T)PH=Dmy(T)+my(T), 36
2. Recipe 3 q dar (™) 1(T) 2(T) (36)

We now give a simple recipe for obtaining leading-orderwhere¥w ) andD are defined as in the case of spiral waves,
approximations to straight twisted scroll waves in reaction—Egs.(19) and(23), respectively, and is defined by Eq(30).
diffusion Egs.(1) or (3). Functionsl (), m,(F), andm,(T) are given by
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1 0.8 .
I(F)== +TP () r 7]
g b r ]
+3v© —— T+ B\q+w©2, - ;
0.1 —
my(T)=T(q+¥(©2)+B(q+W¥(2?2)% : ]
@ 5 (q+Ww(9?)? - 7, ;
my(T)= s ———. 0 L 1o
3 r 0 1.2
. a
These depend on twist through and through the depen-
dence of¥(© on twist. FIG. 12. Comparison of frequenay from asymptotics at first ordésolid)
The Iarge"lf behavior Of\p(l) from Eq. (36) is and full solutions of reaction—diffusion equatioftiasheg for e=0.2 and a

fixed value of7,,=0.4. The contour levels for the reaction—diffusion equa-

\P(l) ~ 6DB2+5 ¥ tions (labeled are the same as for the asymptotiost labelegl.
0)= —
(T 38° 17282
—— (s TO=/|.
B § D;=0.311.
The solution to the universal equation can be found in?- Recipe 4
principle by integration. The solution is Finally we give a recipe for obtaining leading-plus-first
- order approximations to scroll waves in E@$) or Egs.(3).
(D gy Wy [T PMa(p) +Ma(p) First use Recipe 3 to obtain(® and®{?)* . Use Eq.(39) to
YOO =wPT) | — T dp, y/ I o2
0 Y (p) find D for the relevant values of twist and model parameters.
Then calculate
whereW, is the solution to the homogeneous problem given 1)
dD*(r)=—k@r, 40b
\p(l):i( +q,(0)2)3/2ex _JT p\P(O)(p)d - (r) r (40b)
h T q 01T~TV2VP_2 Pl where
2
(D 6DB“+5

1. Comments 3aB? /—2_w(0)_ 7_WBz'

The selection mechanism at first order is the same as for Then
spiral waves at this order: the first order shape function

=0 (1)
w3)(T) given by Eq.(37) will diverge exponentially unless 0= Ew, (413
D has the selected value DL (r,2)=dO"(r,2)+edD (1), (41b
D__% D, (r,2)=P, (r,2)—2m0°. (410
Cy’ This final recipe gives the scroll frequency and shape as a
where function of twist and all three parametexsb, ande appear-

ing in the reaction—diffusion equations.

ci= f [mi(p)/ ¥ {P(p) 1dp. _
0 C. Comparison for scroll waves
The value ofD now depends on twist. Figure (H We present here a brief comparison between asymptotic
showsD as a function ofr2/x from numerical solutions to predictions and full solutions of the reaction—diffusion equa-

the universal equation at first order. The values are well aptions for the case of twisted straight scroll waves. Figure 12
proximated by the following: shows a frequency comparison throughout &heé param-

eter plane for fixeck and7,,, while Fig. 13 compares the
Tvzvr shape of a particular twisted scroll with the asymptotic
- shape. The scrolls displayed in Figs. 10 and 13 are the same.
Figure 13 shows tha concentration at a fixed location; all
otherz locations are equivalent apart from the rotationgin
’ (39) seen in Fig. 10.

The twist chosen for the scroll in Figs. 10 and 13 corre-

where spond to about the upper limit of twist that would normally

2
Tw

D:D0+D1 +D2

)

213
TW

M

+Dj
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In contrast, the approach we have taken is to consider
the asymptotics of smalt and to focus on the case of uni-
form twist: dr,,/ds=0. As a result, we are able to obtain
explicitly wg anda,; as expansions in. Furthermore, we are
not restricted in the size aof,, we can consider. In principle
we can obtain higher-ordém 7,,) corrections to Eq(42).

Using the recipes in this paper we obtain

w=w0—a173\,+0(7€v), (43
where
926
wp=0.692u—¢ a +0(&9), (44)
FIG. 13. Comparison between twisted-scroll solutions from reaction—
diffusion equations and shapes obtained from asymptotics using Recipe 4. 0.748 2
Quantities are shown at a fixedlocation. Theu field from Egs.(3) is a= —0.373-¢ a +O(8 ). (45)

shown with excited (>0.9), quiescent(<0.1), and interfaces regions

0.1=u=<0.9). Parameters a@=1.0, b=0.1, e=0.2, and the domain ra- ; ;

(0.1=u=0 )_ _ - e The numerical factors have been obtained fi®gn B, Dy,

dius is 20.7,=0.4 corresponding ta,,~0.35 for these value od andb. . . . .
and D,. Equations(43)—(45) provides simple expressions
for wy anda, to two orders ine. Based on the comparisons

be of interest; the twist just slightly exceeds the value givingalready shown in this paper, they should be reasonably accu-
rise to instability at parameter values in the capfion. rate over a large range of model parametersb, ) and for
From Figs. 12 and 13 it can be seen that the asymptotigoderate values of twist, including most cases of practical
predictions are good and moreover that there is little qualiinterest. For example, for the scroll shown in Figs. 10 and 13
tative difference between these cases and those for spirle frequency given by Eq#43)—(45) is w=0.600, whereas

waves at the same value of See Speciﬁca”y F|gs 3and 7 the frequency from the full solution of the reaction—diffusion
for e=0.2. equations isv=0.608. If needed, one can obtain the correc-

tions at higher powers of,, in Eq. (43) from the constants
By, etc., already given. For other attempts to estimate theo-
retically and measure numericalyy see Refs. 36 and 39.

It is possible to use the asymptotic results to derive ex-  Finally, we consider briefly the other equations in the
plicitly coefficients in the laws for scroll filament theory of filament dynamics. There are two equations gov-
dynamics®*~%"In short, the theory of filament dynamics at- erning filament motion in the normal and binormal direc-
tempts to describe the behavior of scroll waves in terms ofions. Taking into account symmetries, these equatior’s are
the motion of scroll filaments and the rotation of waves
about these filaments. The theory is derived for the case of Va=bax,
scroll waves weakly perturbed from straight, untwisted
scrolls. The successes and shortcomings of this theory are
treated elsewher& 3 whereV, andV, are the local velocities of the filament in

What interests us here is that one of the three equationthe normal and binormal directionsg, is the local filament
in the theory describes the change in local scroll rotatiorcurvature andb, andcy are coefficients which depend on the
frequency due to twist. This equation is medium. These coefficients are analogousifcand b, ap-
pearing in Eq(42). As with those coefficients, the formulas
for b, andc; require the adjoint eigenfunction of an operator
where wg is the frequency of the straight untwisted scroll, defined in terms of the spiral solution, and thus these coeffi-
i.e., the spiral frequency; andb, are coefficients depend- cients have never been computed analytically.
ing on the medium, andr,,/dsis the rate of change of twist At the current time only the leading-order asymptotics is
along the filament. This last term is zero when the twist iscomplete for the general case of a curved, twisted filament.
uniform. There are two equations in the theory describing theét this order the asymptotics predicts thgtandc; vanish,
motion of the scroll filament in normal and binormal direc- that is that the filament motion vanishesas: 0.
tions for curved filaments. We discuss these effects briefly  We illustrate this in Fig. 14 where we shols as a
below. function of e. In this case the value df, has been obtained

In the derivation of Eq(42), a two-dimensional spiral by numerically simulating the collapse of axisymmetric
wave with frequencyw, is assumed to exist, and the twist scroll rings(see Refs. 39 and 40The normal velocity of the
and its derivativer,, anddr, /ds are taken to be small. No ring is indeed found to be proportional to curvature and the
assumption is made anin the reaction—diffusion equations. proportionality gives the value df,. This value goes to zero
While formulas exist for the coefficients; andb,, these as a function ok as expected from the leading-order asymp-
formulas require the adjoint eigenfunctions of a linear operatotics. The binormal velocity can also be found, but it is
tor defined in terms of the spiral solution. Hence they havesignificantly smaller(in this cas¢ and the values of; are
never been used to obtaiy andb; . much more uncertain than those foy.

VI. FILAMENT DYNAMICS

b= C3K,

0=wo—a,7o,+b,dr,/ds, (42
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L L B S S B B B B A and Karm@&® on the asymptotics at the point of propagation
failure to obtain a complete asymptotic description of waves
throughout parameter space.

Because the asymptotic predictions for the frequency of
spiral and twisted scroll waves are particularly simple, and
because the frequency is a particularly important quantity,
we conclude with a summary of these predictions. Equations
. (43)—(45) together with Eqgs(13) and (14) give the fre-

P PRI R B qguency of scroll solutions to Eg$3). The units are Fife

0 0.1 0.2 0.3 units. Since Eqs(1) with D,=1 have been considered often
in the literature, it is worthwhile recasting these formulas in
FIG. 14. Normal-velocity coefficierts, as a function of: for fixed model  the units of these equations. We have

parameterea=1.0 andb=0.1. The line is drawn to show the regime where
b, is well approximated byb$Y .

|
[
LINL I L B L B L

— 2 4
wn=wo ~a1Twy T O(7yp),
where

What is intriguing here is that there is a large regime for 0.692« 0.926 113
which b,~¢b$" for some as yet analytically unknown value ~ ®o,= 13~ 5 T Olen),
of b(zl). It can be found numerically for particular parameter "
values such as those considered in Fig. 14, but it is not . n 3
known in general. a;=—0.373- Tap +0(en”)

This illustrates the power of the asymptotic approach we
have pursued. While there seems little hope of obtaining th&/ith
values ofb, andc; using the expressions given in Refs. 34 ) 7[{05(1_05)

p=2.1Q——"

2/3 a

and 35, there clearly is some hope of finding analytical for- , Uszi—b-

mulas for the first-order contributiob$’ and c§". This

would be a major achievement as it would give explicitly the FOr small and even not so small valueseqf, these remark-
equations of filament motion for a considerable range of pa@bly simple formulas give the frequency of solutions of Egs.

a

rameter values. (1) and(2) as a function of all three model parametexsb,
ande,, and as a function of twis:twn measured in the length
VIl. SUMMARY units of Egs.(1) and(2). For zero twist they simplify even

) ) ) ) _ further giving the frequency of spiral waves.
In this paper we have given simple recipes for obtaining

the frequenmes_ and shapes of_waves in a model of exc'tabIECKNOWLEDGMENTS

media. The recipes apply to spiral waves and to scroll waves

with straight filament and uniform twist. They are based on  This paper originated in part from a series of email ex-
asymptotic universal equations at leading and first order irthanges with Art Winfree concerning the asymptotic results
the asymptotic parameter The recipes are specifically de- and the meaning of the Fife limit and we thank him for his
signed to be used without further need for solving these difhelpful comments and suggestions. We also thank Laurette
ferential equations. We have presented numerous comparifuckerman for her suggestions. D.B. wishes to thank the
sons between the predictions of the asymptotic recipes andNRS and the Laboratoire d’Informatique pour la’ dde

full solutions of the reaction—diffusion model, and in so do-nique et les Sciences de I'lngieur where parts of the work
ing we have demonstrated the range of validity for thesevere conducted.

predictions. Finally, we have discussed the connection be-

tween the asymptotic results and the equations of filamemtppeNDIX A: COMPUTING FIRST-ORDER

dynamics. Specifically we have evaluated one of the previynVERSAL FUNCTION

ously unknown coefficients in this theory and we have dis- ) ) )
cussed the promise for progress in this direction. Here we describe a computational procedure for obtain-

There are many directions this work could go in theing the first-order universal function. This function is given
future. One direction that probably should not be pursued idy
the O(e?) correction to the formulas given here. The reason T m(p)
for this can be seen in Fig(d). While not all of our numeri- q’(l)(T):‘I’ﬁl)(T)f W)—dp, (A1)
cal computations show such excellent agreement with the oWr(p)
first-order asymptotics, we have never seen a case for whiclwherem(p) =Dm;(p) + my(p) and‘lfﬁl)(p) is the homoge-
the next-order correction would appear to offer significantneous solution. See Secs. Il C and V B.
improvement. The qualitatively important effect not captured ~ For values of between 0 and approximately ¥,(1)(T)
by the first-order asymptotics is the frequency drop as thean be found accurately by evaluating the integral using stan-
system approaches the point of wave propagation fajgege  dard methods such as the trapezoidal rule. This procedure
Sec. VA. This is not anO(&?) effect. What would be very gives an inaccurate evaluation®f*)(F) for larger values of
valuable is to use, and probably extend, the work of HakinT because of the exponential behavior‘bﬁl)(p).
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For values of larger than order one we obtaih(*)(T)
as follows. First, Eq(AL) is rewritten as

T m(p)
W“kn=WWGyL@§%5dm

where we have useff;m(¥)/¥{Y(p)dp=0. Then we trans-
form the integral by lettingc=1—T/p:
=
m| ——— 1)
1 (1—x (T
\I’(l)(’r): _Tf ( 2) h (~)
0 (1_X) \P(l) r
P l(1-x)

This is more suitable form for finding?* whenT¥ is of

order one and larger. The integrand is small everywhere e

cept in a small neighborhood of=0 (corresponding tg
To deal with the singularity at=0 we separate off the
integral over the boundary layer near=0 and introduce
stretched coordinates in this region. et 1/5, choosen
such that5®< <1 and split this integral into two parts: one
from 0O to » and the other fromy to 1. For the first integral
introduce the stretched coordinate:x/ 6°. This gives

5 218 M(1/8(1— 8°%))
YD(F=1/8)=— & R F
w(1/6)
“TIwa-5%0) %
1 (1m(1/6(1—x))
SL (1-x)2

w(1/6)
TOWs1—x)
(A2)

A suitable choice fory is 7= 5.
Thus forT of order 1 and smaller we fimd*)(F) using
Eq. (A1) and forT of order 1 and larger we fina’ (Y)(F)

using Eq.(A2). In both cases we evaluate the integrals using:p

the trapezoidal method.
The universal valu® is found in this same way except

that rather than usinm in the integrand, we used separately ,,

m; andm,.

APPENDIX B: FITZHUGH-NAGUMO MODEL

Asymptotics for spiral and scroll waves 649

oM=D/2.

Then in the units of Eq91) with D,,=1, the predicted fre-
quency for spiral and twisted scroll waves in the Fitzhugh—
Nagumo model is

_ 2
W= wo, ~ &1Twp s
where

1/3

0.69
2 1450
M

Wo = ?/r —0.463, a; = — 037{
n

with x given by
w=0.7443- %23
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