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Abstract. The Method of Matched Asymptotic Expansion of Singular Integrals (MAESI) is used

to expand the Biot-Savart law in terms of di�erent parameters. This method is �rst used to �nd, in

terms of the small-distance r to a line vortex, the �rst orders of the known expansion of the potential

ow induced by this line vortex. This method is also used to easily compare two equations of motion

of a slender vortex �lament: the one obtained in an ad-hoc way by a cut-o� line-integral technique

and the one derived from the Navier-Stokes equations by Callegari and Ting. Finally, this method is

used to give the inner expansion of the ow induced by a slender vortex in terms of its slenderness

�. This is the �rst inner expansion up to order one in terms of � of the Biot-Savart law for a slender

vortex. An application of this inner expansion is then given to �nd the induced velocity of a family

of non-circular vortex rings with axisymmetric axial-core variation. In order to understand the time-

evolution of these initial conditions to the Navier-Stokes equations, a short time scale is introduced.

A quasi-hyperbolic system that describes the leading-order dynamics of the axisymmetric axial core

variation on curved slender vortex �lament is �nally extracted from the Navier-Stokes equations.

Key words: Biot-Savart law, matched asymptotic expansions, singular integrals, vortex �lament,

axial core variation.

1. Introduction

An integral with a small parameter may become singular if this parameter is set to

zero. The method of Matched Asymptotic Expansion of Singular Integrals (MAESI) [1,

pp. 98{104], [2, pp. 341{349] is a well established method used to obtain the expansion

of such integrals in terms of a small parameter. In an incompressible inviscid or viscous

uid the Biot-Savart law is an integral equation that relates the velocity �eld to that

for the vorticity. In analytical studies of slender vortex �laments this integral often

becomes singular in terms of some small parameter. For example the velocity v induced

by a line vortex C of circulation � is

v(x) =

�

4�

Z

C

t(a

0

)� (x�X(a

0

))

jx�X(a

0

)j

3

da

0

; (1)

where � is the cross-product, t is a tangent vector to the line and X = X(a) is

a function which denotes a point on this curve as a function of arclength a. This

expression of v is a singular integral in terms of the distance r to the line. Its expansion

in terms of r is given by several authors [3], [4, pp. 33{38] in the form

v(r) =

�

2�r

e

'

+

�

4�

K log

L

r

b+Q

f

+O(r); (2)
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whereK is the local curvature of the line, b the binormal vector and e

'

the orthoradial

vector in a normal plan to the �lament (Figure 1). The length L and the �nite part

Q

f

of the self-induced velocity are not often given but can be found in Callegari and

Ting [5].

In this paper we use the MAESI method to expand the Biot-Savart law in terms

of di�erent parameters. This method is �rst used in Section 2 to �nd, in terms of the

small-distance r to a line vortex, the �rst orders of the expansion of the potential ow

(1) induced by this line. With this method the derivation of this known expansion

becomes straightforward. So this gives a new interesting derivation of this expansion

and is an alternative to the technique of the osculating circle initially used by Widnall

et al. [6] and used by Moore and Sa�man [7, 4]. As this method has scarcely been

used in the �eld of vortex dynamics and will be used in a more complex situation in

Section 4, its successive steps are fully given in Section 2 to show how it works. The

expansion is obtained up to order O(r) as by Fukumoto and Miyazaki [8]. For the �rst

time all global integral parts are explicitly given.

This method is also used in Section 3 to easily compare two equations of motion

of a slender vortex �lament, namely the one obtained in an ad-hoc way by a cut-o�

line integral technique [9, 10] and the one derived from the Navier-Stokes equations

by Callegari and Ting [5]. This comparison gives the cut-o� length as a function of

the inner structure parameters C

v

and C

w

de�ned by Callegari and Ting.

Finally, the method is used in Section 4 to give the inner expansion of the ow

induced by a slender vortex in terms of its slenderness �. This is the �rst inner

expansion up to O(1) in terms of � of the Biot-Savart law for a slender vortex. The

successive steps of this more complex use of the MAESI method are not given because

this method has previously been described in Section 2 for the line vortex.

An application of this inner expansion of the Biot-Savart law is then given in Section

5 to �nd the induced velocity of a family of non-circular vortex rings with axisymmet-

ric axial-core variation. These vortex rings with core variation are interesting initial

conditions to the Navier-Stokes equations.

Finally, in order to understand the time-evolution of these initial conditions, a short

time scale is introduced in Section 6. This time is in-between the time of the evolution

of a non-axisymmetric core and the time of motion of a curved vortex. In this Section 6

a quasi-hyperbolic system that describes the leading-order dynamics of axisymmetric

axial core variation on curved slender vortex �lament is �nally extracted from the

Navier-Stokes equations. This is of interest when compared to systems obtained in an

ad-hoc way such as the one proposed by Lundgren and Ashurst [11].

2. The potential ow induced by a line vortex near this line

The closed line vortex C of circulation � and length S is described parametrically with

the use of a function X = X(s) which denotes a point on the curve as a function of

the parameter s with s 2 [��; �[. At each point of this curve the Frenet vector basis

(t;n;b) exists with respectively the tangent, normal, and binormal vectors (Figure 1).

Here and throughout this paper the di�erentiation @f=@x of a function f with respect

to its variable x is denoted by f

x

. The variable �(s) = jX

s

j is introduced and is equal
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to 1 if s is an arclength denoted by a. As we are interested in �nding the velocity �eld

near the line C, we introduce a local curvilinear coordinate system M(r; '; s) and the

curvilinear vector basis (e

r

; e

'

; t) valid near this line. This system is de�ned in the

following manner; if P(s) is the projection on C of a point M near the curve then PM

is in the plane (n;b) and thus polar coordinates (r; ') can be used in this plane with

the associated polar vectors (e

r

; e

'

). The induced velocity is then given by

v(r; '; a) =

1

4�

Z

C

t(a

0

)� (x�X(a

0

))

jx�X(a

0

)j

3

da

0

; (3)

where x = X(a) + re

r

('; a). Here all lengths are non-dimensionalized by a charac-

teristic length L of the same order as the inverse of the local curvature K and the

velocity �eld by �=L. The expansion of v in terms of r is of interest because it is used

in the asymptotic derivation of the leading-order equation of motion of slender vortex

�lament [5] in order to perform the asymptotic matching between the outer region of

the slender �lament and the inner region of the core.

This expansion of v in terms of r was �rst derived with the technique of the

osculating circle by Widnall et al. [6] and then this technique was also used by Moore

and Sa�man [7, 4]. The MAESI method is straightforward and gives a new interesting

derivation. In order to show how it works, and as this method has scarcely been used in

the �eld of vortex dynamics, we found it interesting to quickly give its successive steps

in this section for readers who may not know, or not be at ease with, this method. It is

also easier to give a description of this method in this simple case of a line vortex than

in the more sophisticate case of a slender vortex �lament as we use it in Section 4. So

this gives an useful introduction to this following section. As it will be fully described

in the following, this method consists in splitting the integral into two parts. In an

outer region outside a neighbourhood of the point P(a) the integrand is expanded

in terms of r with a

�

= a

0

� a held �xed and then integrated. In an inner region in

a neighbourhood of P(a) the stretched inner variable �a = a

�

=r is introduced. The

obtained integrand is expanded in terms of r with the stretched inner variable held

�xed and then integrated. The last step is the asymptotic matching which consists in

adding these two integrated expansions.

First, in order to move the singularity from a to 0, the change of variable a

�

= a

0

�a

is performed and the integral (3) becomes

v(r; '; a) =

1

4�

Z

+S=2

�S=2

K(r; '; a; a

�

)da

�

; (4)

where K(r; '; a; a

�

) = t(a+ a

�

)� (x�X(a+ a

�

)) =jx�X(a+ a

�

)j

3

: Following the

MAESI method, the small intermediate parameter �, such that r � � � 1, is then

introduced and the integral is splitted into two parts v(r; '; a) = Out + In , where

Out =

1

4�

Z

��

�S=2

Kda

�

+

1

4�

Z

+S=2

�

Kda

�

and In =

1

4�

Z

�

��

Kda

�

: (5)

The stretched variable �a = a

�

=r is then introduced in the inner region and gives

In =

1

4�

r

Z

�=r

��=r

~

Kd�a;
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Figure 1. The centerline and the local co-ordinates of the vortex ring.

where

~

K(r; '; a;�a) = K(r; '; a; r�a) has been de�ned.

In a �rst step we perform the outer expansion by �nding the expansion in terms of

r of the outer part Out. In order to do so, the expansion of K in terms of r is �rst

found to be

K = t(a+ a

�

)� d= jdj

3

� re

r

� t(a+ a

�

)= jdj

3

�3r

�

e

r

('; a)�d= jdj

5

�

t(a+ a

�

)� d +O(r

2

); (6)

where d = X(a)�X(a+ a

�

). This expansion (6) is then integrated with respect to a

�

which gives the sought outer expansion.

In a second step we perform the inner expansion by �nding the expansion in terms

of r of the inner part In. In order to do so, the expansion of

~

K in terms of r is �rst

found to be

r

~

K =

e

'

rg

3

+

3K�a

2

cos'e

'

2g

5

+

K�a

2

b

2g

3

+ r

 

�a

4

K

2

e

'

8g

5

+

15K

2

�a

4

cos

2

'e

'

8g

7

!

+r

 

3�a

4

K

2

cos'b

4g

5

�

�a

2

(KT cos'�K

a

sin ') t + �a

2

K

2

e

'

2g

3

!

+O(

r

2

g

3

); (7)

where g =

p

1 + �a

2

. Then this expansion (7) is integrated with respect to �a. All these

integrals have analytical expressions which are easily found and this gives the sought

inner expansion. There are no longer integrals in this expansion.

In a last step we perform the asymptotic matching by expanding in terms of

� � 1 the found outer expansion, by expanding in terms of �=r � 1 the found
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inner expansion, and by adding these two expansions. This proceeds as follows. In

order to expand the outer expansion in terms of � � 1 and to remove its singularity

in terms of �, the singular behaviour of each integrand near a

�

= 0 of the integrals

in this outer expansion is studied. For example the singular behaviour near a

�

= 0 of

the �rst term in Equation (6) is

t(a+ a

�

)� d=jdj

3

= K(a)b(a)=2ja

�

j+O(1);

and so we can write

Z

+S=2

�

t(a+ a

�

)� d

jdj

3

da

�

=

Z

+S=2

�

[

t(a+ a

�

)� d

jdj

3

�

K(a)b(a)

2ja

�

j

]da

�

+

Z

+S=2

�

K(a)b(a)

2ja

�

j

da

�

: (8)

As the singular behaviour is now removed in the �rst integral at the right-hand side

of Equation (8), its expansion in terms of � is then simply found by means of a Taylor

expansion and the second integral is easily integrated. When this is done for each

term, we have

Out = A(a) + r(B('; a)� 3C('; a))�

1

4�

K(a) log

2�

S

b(a)

+

r

4�

�

1

�

2

�

4

S

2

+

3

4

K

2

log

2�

S

�

e

'

(9)

+

r

4�

(� sin'K

a

+ cos'KT ) log

2�

S

t �

3

8�

rK

2

cos' log

2�

S

b

+O(�

2

) +O(�r) + O(r

2

);

where T is the local torsion of the line vortex and A, B and C are given by

A(a) =

1

4�

Z

+S=2

�S=2

[

t(a+ a

�

)� d

jdj

3

�

K(a)b(a)

2ja

�

j

]da

�

; (10)

B('; a) =

1

4�

e

r

('; a)�

Z

+S=2

�S=2

[�

t(a+ a

�

)

jdj

3

� f

B

(a; a

�

)]da

�

; (11)

C('; a) =

1

4�

Z

+S=2

�S=2

[

e

r

('; a)�d

jdj

5

[t(a+ a

�

)� d]� f

C

(a; a

�

)]da

�

; (12)

with

f

B

(a; a

�

) = �

1

ja

�

j

3

[t(a) +K(a)n(a)a

�

+ k

a

�

2

2

];

k = K

a

(a)n(a) +K(a)T (a)b(a)�

3

4

K

2

(a)t(a);

f

C

(a; a

�

) = �

K

2

(a)b(a) cos(')

4ja

�

j

:
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The inner expansion is then easily expanded in terms of �=r� 1 and gives

4�In =

2e

'

r

�

re

'

�

2

+

3

4

r

3

�

4

e

'

+K cos'

"

1�

3

2

�

r

�

�

2

#

e

'

+K

"

�1 + log 2 + log

�

r

+

3

4

�

r

�

�

2

#

b(a)

�2r

"

�

K

2

8

e

'

�

3

4

K

2

cos'b(a)

#

�

�

4

3

+ log 2 + log

�

r

�

(13)

�r [KT cos'�K

a

sin ']

�

�1 + log

�

r

+ log 2

�

t(a)

�rK

2

�

�1 + log

�

r

+ log 2�

3

4

cos

2

'

�

e

'

+O(r

2

) + O(

r

5

�

6

) +O(

r

4

�

4

):

Finally, the expansions (9) and (13) are added and b(a) = sin(')e

r

+ cos(')e

'

is

replaced in the order O(r). As expected, the intermediate parameter � disappears and

we end up with the following expansion of the velocity v near the line vortex

v(r! 0; '; a) =

1

2�r

e

'

+

K

4�

cos'e

'

+A+

K

4�

�

log

S

r

� 1

�

b

+rI+

�

B� 3C�

1

�S

2

e

'

�

r +O(r

2

log r); (14)

where

I =

3

16

K

2

�

�

(e

r

sin 2'+ e

'

cos 2')

�

log

S

r

�

4

3

��

+

3

16

K

2

�

�

1

2

e

'

cos 2'+

1

18

e

'

�

+

1

4�

(K

a

sin '�KT cos')

�

log

S

r

� 1

�

t:

Fukumoto and Miyazaki [8] have already given this expansion (14), but it is the

�rst time that the expressions of the terms B and C are given. A comparison between

(14) and (2) shows that L = S and that the exact value of Q

f

is

Q

f

=

�K

4�

(cos'e

'

� b) + �A:

This expansion (14) can also be used to easily obtain the induced velocity of a in�nite

non-closed line vortex. In order to do so, we consider that this line to be composed

of a central part of length S around the point where the velocity is sought and two

semi-in�nite parts on both sides of this central part to complete this line. We easily

obtain the expansion of the velocity near this open line by applying (14) to the central

part of this line and by adding the induced velocity of the two semi-in�nite parts.
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3. Comparison between the Callegari and Ting equation of motion and a

cut-o� technique

In this section we derive a relation between the cut-o�-length parameter that appears

in the cut-o� line-integral technique [9, 10] and the inner structure parameters C

v

and

C

w

de�ned by Callegari and Ting [5]. Such kind of comparison between an asymptotic

equation of motion and a cut-o� technique was �rst performed by Widnall et al. [6, 12]

and then by Moore and Sa�man [7, 4]. This was left to be done with the Callegari

and Ting equation of motion.

Let us recall that a slender vortex ring of circulation � is a �eld of vorticity which

is non-zero only in the neighbourhood of a three-dimensional curve C, called the

centerline. This curve is described parametrically by a function X = X(s; t) which

denotes a point on the curve as a function of the parameter s, with s 2 [��; �[, and

the time t. The thickness � of the ring is of order l and the other length scales, for

example the local curvature K or the length S of C, are of the same order L. Since

the vortex is slender, a small parameter �� 1 is de�ned as the ratio l=L.

Using a careful matched asymptotic expansion in the Navier-Stokes equations,

Callegari and Ting [5] found the following equation of motion

@X=@t = Q+

K(s; t)

4�

[� log � + log(S)� 1+C

v

(t) + C

w

(t)]b(s; t); (15)

where Q = A(s; t)� [A(s; t)�t(s; t)] t(s; t) with

A(s; t) =

1

4�

+�

Z

��

�(s+ s

0

; t)

"

t(s+ s

0

; t)� (X(s; t)�X(s+ s

0

; t))

jX(s; t)�X(s+ s

0

; t)j

3

�

K(s; t)b(s; t)

2 j�(s; s

0

; t)j

#

ds

0

;

and �(s; s

0

; t) =

s+s

0

R

s

�(s

�

; t)ds

�

: Here the velocity �eld is non-dimensionalized by �=L

and all lengths by L. In this Equation (15), C

v

(t) and C

w

(t) are known functions [5]

which describe the orthoradial and axial evolution of the inner velocity in the core.

This Equation (15) holds for a vortex ring with axisymmetric structure at leading

order and no axial core variation at this order.

Prior to this asymptotic derivation of the equation of motion or the ones of Widnall

et al. [6], and Moore and Sa�man [7], the logarithmic singularity in terms of r which

appears in (14) had been avoided by ad-hoc de-singularization techniques. For exam-

ple, with the cut-o� integral technique [9, 10] an ad-hoc cut-o� of the line integral (3)

gives a de-singularization of this integral in terms of the distance r to this line and

yields the equation of motion:

@X=@t =

1

4�

Z

I

�(s

0

; t)

t(s

0

; t)� (X(s; t)�X(s

0

; t))

jX(s; t)�X(s

0

; t)j

3

ds

0

; (16)

where I = [0; 2�[n[s� s

c

; s + s

c

[ and s

c

is an unknown small parameter called the

cut-o� length.

This integral (16) is singular in terms of the small parameter s

c

and can be expanded

in terms of this parameter. In fact the integral in Equation (16) is the same as the
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integral in the Equation (5) of Out if � is put equal to s

c

. So one simply obtains this

expansion of (16) by replacing � by s

c

in (9). The comparison between this expansion

and (15) leads to

s

c

(s; t) =

�

2�(s; t)

exp (1� C

v

(t)� C

w

(t)) : (17)

This gives the relation between the cut-o� length s

c

, the reduced thickness � and

the inner-core parameters C

v

(t) and C

w

(t) of Callegari and Ting. So Equations (16{

17) are equivalent to Equation (15), except that, when s

c

of (17) is plugged into

(16), the integral is singular in terms of �, while the integral A in (15) is not. This

comparison can also be performed for other kinds of ad-hoc de-singularization [13].

The de-singularized integrals subjected to these ad-hoc techniques are still singular

integrals in terms of their ad-hoc parameter of de-singularization.

4. The inner expansion of the velocity �eld induced by a slender vortex

In this section the inner expansion of the ow induced by a slender vortex in terms of

its slenderness � is carried out. This is the �rst inner expansion up to O(1) in terms of

� of the Biot-Savart law for a slender vortex. In order to perform this expansion we use

the MAESI method that was previously described in Section 2 for the simpler case of

a curved line vortex. The outer expansion up to O(1) in terms of � of the Biot-Savart

law for this slender vortex is also proved to be the velocity �eld (3) induced by a line

vortex.

As de�ned in the previous section, a slender vortex ring is a solenoidal �eld of

vorticity !(x) which is non-zero only in the neighbourhood of a three-dimensional

curve C. The ux � of vorticity in each section of the ring is a constant and the

vortex ring may have an axial velocity ux of strength m. One can distinguish an

outer problem de�ned by the outer limit � ! 0 with r held �xed, which describes the

situation far from the centerline C and an inner problem de�ned by the inner limit

�! 0 with �r = r=� held �xed, which describes the situation near this centerline. The

inner expansion f

inn

(x; �) of a vector �eld f(x; �) is the expansion � ! 0 of f(x; �)

in terms of �r = r=� held �xed and the outer expansion f

out

(x; �) is the expansion

�! 0 of f(x; �) with r held �xed. The velocity induced by this vortex is given by the

Biot-Savart law

v(x) =

1

4�

ZZZ

!(x

0

)� (x� x

0

)

jx� x

0

j

3

dx

0

; (18)

which can be written in local coordinates near the centerline C

v(r; '; s; t; �) =

1

4�

ZZZ

�

2

!(�r

0

; '

0

; a

0

; �)� [X+ re

r

� (X

0

+ ��r

0

e

0

r

)]

jX+ re

r

� (X

0

+ ��r

0

e

0

r

)j

3

h

0

3

�r

0

d�r

0

d'

0

da

0

;(19)

where h

0

3

= (1�K(a

0

)��r

0

cos('

0

)) : In this section, since the parameter � is small, we

want to �nd the expansion of Equation (19) in terms of �. Thus, for the given vorticity

�eld !(x) = !(�r; '; a; �) = �

�2

!

(0)

(�r; '; a); we are seeking the following expansions
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!

out

= !

out(0)

+� !

out(1)

+O(�

2

),

v

out

= v

out(0)

+� v

out(1)

+O(�

2

),

v

inn

= �

�1

v

inn(0)

+ v

inn(1)

+O(�):

(20)

We denote the radial, circumferential and axial components of the vorticity �eld ! by

!

1

; !

2

; and !

3

, i.e.,

! = !

1

e

r

+ !

2

e

'

+ !

3

t:

The conservation law div! = 0 in the curvilinear coordinates is

(!

1

rh

3

)

r

+ (h

3

!

2

)

'

+ r!

3
a

� Tr!

3
'

= 0; (21)

where T is the torsion of the centerline. The conservation of the circulation along the

vortex also gives

RR

!

3

rdrd' = 1.

We �rst perform the outer expansion of the Biot-Savart law (19) and obtain

v

out(0)

(x) =

1

4�

ZZZ

!

(0)

(�r

0

; '

0

; a

0

)� (x�X(a

0

))

jx�X(a

0

)j

3

�r

0

d�r

0

d'

0

da

0

; (22)

where x = X(a) + re

r

('; a). In fact, this expression can be simpli�ed, and to do so,

let us de�ne

D(a) �

ZZ

!rdrd'� t =

ZZ

(! � !

3

t) rdrd' =

ZZ

(!

1

e

r

+ !

2

e

'

) rdrd':

The de�nitions of e

r

and e

'

e

r

= cos'n+ sin'b; e

'

= � sin 'n+ cos'b;

and an integration by parts gives

D(a) = n

ZZ

(!

1

cos'� !

2

sin') rdrd'+ b

ZZ

(!

1

sin'+ !

2

cos') rdrd'

= n

ZZ

(!

1

cos'� !

2

sin') rdrd'+ b

ZZ

(!

1

sin'� (!

2

)

'

sin') rdrd':

For the vorticity �eld !(x) = �

�2

!

(0)

(�r; '; a); Equation (21) gives

(!

1

�r)

�r

+ (!

2

)

'

= 0; �K(a) [!

1

cos'� !

2

sin'] + !

3
a

� T (a)!

3
'

= 0:

We use these two equations to �nd that

D(a) =

n

K

ZZ

!

3

a

rdrd'+ b

ZZ

(!

1

sin '+ (!

1

�r)

�r

sin') rdrd'

= b

ZZ

(!

1

+ (!

1

�r)

�r

) sin 'rdrd' = b

ZZ

(�

2

!

1

�r

2

)

�r

sin 'd�rd' = 0;

where we �nally have used the fact that !

1

�r

2

= 0 at in�nity. So D(a) = 0, i.e.

RR

!rdrd' = t, and Equation (22) simpli�es to yield

v

out(0)

(r; '; a) =

1

4�

Z

C

t(a

0

)� (x�X(a

0

))

jx�X(a

0

)j

3

da

0

: (23)
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This shows that at leading order the outer velocity �eld exactly corresponds to the

Biot-Savart law applied to the Dirac delta distribution !

out(0)

= �

C

t on the centerline

C. The next order v

out(1)

(r; '; a) is indeed not zero and is given in Margerit [14].

We now perform the inner expansion of the Biot-Savart law (19) and to do so we

�rst introduce the stretched inner variable �r = r=� in this integral (19) which becomes

v(�r; '; a; �) =

1

4�

ZZZ

�

2

!(�r

0

; '

0

; a

0

; �)� [X+ ��re

r

� (X

0

+ ��r

0

e

0

r

)]

jX+ ��re

r

� (X

0

+ ��r

0

e

0

r

)j

3

h

0

3

�r

0

d�r

0

d'

0

da

0

:(24)

This integral (24) is a singular integral in terms of the small parameter �. In order to

�nd its expansion in terms of �, we use the matched asymptotic expansion of singular

integrals method (MAESI) which has been described in Section 2 for the simpler case

of a line vortex. This method consists in splitting the integration in the axial direction

a

0

into two parts. In an outer region outside a neighbourhood of the pointsM(�r

0

; '

0

; a)

the integrand is expanded in terms of � with a

�

= a

0

�a held �xed and then integrated.

In an inner region in a neighbourhood of the points M(�r

0

; '

0

; a) the stretched inner

variable �a = a

�

=� is introduced. The found integrand is expanded in terms of � with the

stretched inner variable held �xed and then integrated. The last step is the asymptotic

matching which consists in adding these two integrated expansions. A straightforward

calculation gives

v

inn(0)

= �

1

2�

ZZ

g�r

0

d�r

0

d'

0

; (25)

where

g = !

(0)

(�r

0

; '

0

; a)�

�

�r

0

e

r

('

0

; a)� �re

r

('; a)

�

=k

2

;

k

2

= �r

2

+ �r

02

� 2�r�r

0

cos('� '

0

):

At �rst order we have

v

inn(1)

= A+

K

4�

[log

S

�

� 1]b�

1

4�

ZZ

!

(0)

a

(�r

0

; '

0

; a)� t(a) log

1

k

2

�r

0

d�r

0

d'

0

�

K(a)

8�

ZZ

!

(0)

(�r

0

; '

0

; a)� n(a) log

1

k

2

�r

0

d�r

0

d'

0

�

K(a)�r cos(')

4�

ZZ

g�r

0

d�r

0

d'

0

(26)

�

T (a)�r

2�

ZZ

!

(0)

(�r

0

; '

0

; a)� t(a)

k

2

sin('� '

0

)�r

02

d�r

0

d'

0

+

K(a)

4�

ZZ

g cos'

0

�r

02

d�r

0

d'

0

;

whereA is given by (10). These two terms (25) and (26) give the velocity �eld near and

within the vortex ring of vorticity ! = �

�2

!

(0)

. If the vorticity has only a tangential

component, the term (25) of order 1=� is the two-dimensional Biot-Savart law. This

term (25) of order 1=� and the term of order log � in (26) were initially found by Levi-

Civita [15{17]. The term of order 1 in (26) was given on the centerline �r = 0 for an

axisymmetric vorticity by Klein and Knio [18]. The expansion v

inn

(�r!1; '; a; �) can

be found with the help of the above expansion of v

inn

. The matching law states that the

substitution �r = r=� in the limit v

inn

(�r!1; '; a; �) gives the limit v

out

(r! 0; '; a),

i.e. expression (14). That has been e�ectively checked up to order O(r) by use of the

expression of v

inn(2)

obtained with the help of a computer-algebra system (Maple).
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5. The inner expansion of the Biot-Savart law applied to a family of

slender vortices with axial core variation

In this section, the previous expansion (25{26) of the Biot-Savart law is used to obtain

the inner expansion of the velocity �eld for the following family of slender vortex rings

with axial core variation(Figure 2), namely

Figure 2. The domain of non-zero vorticity.

! =

1

�

2

�

1

��r

2

0

(a)

t + �

�r

0

0

(a)

��r

3

0

(a)

�r

h

3

e

r

+

g(a; �r)

h

3

e

'

�

H

�

1�

�r

�r

0

(a)

�

; (27)

where �r

0

(a) is the core radius of a slender vortex ring of general curved centerline

X(a), �r

0

0

(a) is the axial derivative d�r

0

(a)=da, H is the Heaviside function, and g(a; �r)

is an arbitrary function. We constructed this family (27) of vortex rings with axial

variation as an exact solution of the conservation law div! = 0 { which can be

checked with the help of Equation (21) { and of the normal condition ! �N = 0 on

the interface �r = �r

0

(a), where N is the normal to this interface which is proportional

to e

r

� �r

0

0

=h

3

t. In the following we will consider vortex rings without circumferential

component (g(a; �r) = 0) of the vorticity �eld.

The leading-order outer expansion of the induced velocity is the velocity (23) in-

duced by a line vortex on the centerline X(a). In order to analyse the velocity �eld

induced in the inner region, the relative velocity V is de�ned by v = v(�r = 0; a)+V,

where v(�r = 0; a) is the velocity �eld on the centerline. We denote the radial, cir-

cumferential and axial components of the relative velocity �eld V by u; v; w; i.e.

V = ue

r

+ ve

'

+ wt: The inner expansion of V is taken to be in the form V

inn

=

�

�1

V

inn(0)

+ V

inn(1)

+ :::. The straightforward use of the inner expansion of the

Biot-Savart law (25{26) gives the inner expansion of the induced velocity

V

inn(0)

=

8

>

>

>

>

<

>

>

>

>

:

�r

�

2��r

0

e

'

if �r

�

< 1;

1

2��r

�

�r

0

e

'

if �r

�

> 1;

(28)
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V

inn(1)

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

��r

�2

K

16�

[3 sin'e

r

+ cos'e

'

] if �r

�

< 1;

�

K

16�

��

�

1

�r

�2

+ 4 + 4 log �r

�

�

sin'e

r

+

�

1

�r

�2

+ 4 log �r

�

�

cos'e

'

�

if �r

�

> 1;

(29)

and

v(�r = 0; a) = A+

K

4�

�

log

S

��r

0

�

b; (30)

where �r

�

= �r=�r

0

and the global integral A is given by (10). In order to obtain

this result (28{30), we have used the expressions of the following integrals given by

Gradshteyn [19, pp. 409, pp. 621{622]

Z

2�

0

�1 + a cosx

(1� 2a cosx+ a

2

)

dx =

�

�2� if a < 1;

0 if a > 1;

Z

2�

0

log(1� 2a cosx+ a

2

)dx =

�

0 if a < 1;

2� log a

2

if a > 1;

Z

2�

0

cosnx

(1� 2a cosx+ a

2

)

dx =

8

>

<

>

:

2

�a

n

1� a

2

if a < 1;

2

�

a

n

(a

2

� 1)

if a > 1;

Z

2�

0

sin nx sin x

(1� 2a cosx+ a

2

)

dx =

(

�a

n�1

if a < 1;

�

a

n+1

if a > 1;

Z

2�

0

�1 + a cosx

(1� 2a cosx+ a

2

)

cosxdx =

(

��a if a < 1;

�

a

if a > 1:

The velocity up to order 1 is given in the inner region by (28{30) and in the outer

region by (23). The axial derivative �r

0

0

of the core radius and the local torsion T

of the centerline do not appear in this inner expansion of the velocity �eld up to

this order. In order to check our result, we apply the curl in local coordinates to

the obtained velocity �eld (28{30). The vorticity we derived agrees with the two

�rst orders of the vorticity (27). The next order of the vorticity �eld depends on

the order O(�) velocity �eld. The velocity (30) on the centerline depends only of the

axial coordinates a and does not a�ect these two �rst orders of the vorticity �eld.

We checked also that the two �rst orders of the continuity equation are satis�ed.

The velocity (30) does not a�ect these two �rst orders of the continuity equation.

To check the velocity (30) on the centerline, we use the matching law and compare

the behaviour of the order O(1) velocity �eld (28{30) at in�nity with the one of the

outer velocity �eld near the line at order O(1) in terms of r given by (14). This

comparison con�rms the expression (30) of the velocity �eld on the centerline. If the

centerline is a circle, the global integral A is A = K log(8=2�)b=(4�), as one can

deduce from the comparison between the dimensionless velocity of a circular vortex



Asymptotic expansions of the Biot-Savart law for a slender vortex with core variation 13

ring K [log[8S=(2��)] + C

v

(t)� 1 + C

w

(t)] =(4�) and the equation of motion (15) of

Callegari and Ting.

As in Callegari and Ting [5] a stream function  

(1)

with

u

(1)

=

1

�r

 

(1)

'

and v

(1)

= � 

(1)

�r

+ �rv

(0)

K cos(')

describes the order-one velocity. This stream function is found from (28{29) and is in

the form  

(1)

=

~

 

11

cos(') with

~

 

11

=

8

>

>

>

>

<

>

>

>

>

:

3�r

0

K

16�

�r

�3

if �r

�

< 1;

�r

0

K

16�

�

�

1

�r

�

+ 4�r

�

(1 + log �r

�

)

�

if �r

�

> 1:

(31)

and �r

�

= �r=�r

0

. The streamlines and the velocity �eld associated with this stream

function  

(1)

are displayed in Figure 3. This �gure gives a geometrical description of

the matching law and of the binormal component of the velocity on the centerline.

The family of vorticity �elds (27) and its induced velocity (28{30) give an example

of a three-dimensional slender vortex ring with axial core variation that may be an

initial condition to Navier-Stokes equations. We may rise the question of the time

evolution of this core variation on the vortex ring and of the motion of its centerline.

Even when �r

0

is a constant, the velocity (30) of the centerline does not correspond to

the single-time-scale asymptotic solution (15) found by Callegari and Ting [5]. In this

single-time analysis the parameters C

v

and C

w

in Equation (15) are C

v

= 3=4� log �r

0

and C

w

= 0 for a leading-order velocity (28). The velocity on the centerline found

from Equation (15) is then

v(�r = 0; a) = A+

K

4�

�

�

1

4

+ log

S

��r

0

�

b (32)

and the stream function

~

 

11

is

~

 

11

=

8

>

>

>

>

<

>

>

>

>

:

5�r

0

K

16�

�r

�3

if �r

�

< 1;

�r

0

K

16�

�

2

�r

�

+ 4�r

�

�

3

4

+ log �r

�

��

if �r

�

> 1:

(33)

where �r

�

= �r=�r

0

. The two �rst orders of vorticity are

! =

1

�

2

��

1

��r

2

0

�

K�r

��r

2

0

cos(')�+O(�

2

)

�

t

�

H

�

1�

�r

�r

0

�

: (34)

The di�erence between the order O(1=�) tangential vorticity of the single-time-scale

analysis (34) and the one (27) of the family studied here explains the di�erence between

the velocities on the centerline (30) and (32). It also explains the di�erence (Fig-

ure 4) between the stream functions (31) and (33). The vortex ring (27) without axial

variation is an example of a three-dimensional initial condition of the Navier-Stokes
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

b

n

Figure 3. The streamlines and the velocity �eld associated with the stream function  

(1)

of Equation

(31). The circle is the interface �r

�

= 1.

equation for which the study of the time evolution would require a double-time-scale

expansion with a normal time t and a fast time

�

t = t=�

2

as was introduced in two

dimensions by Ting and Tung [20, 21].

We can add an axial ow of strengthm to this ow (28{30) by adding the following

�eld of velocity

v =

1

�

�

m

��r

2

0

(a)

t+ �m

�r

0

0

(a)

��r

3

0

(a)

�r

h

3

e

r

+

f(a; �r)

h

3

e

'

�

H

�

1�

�r

�r

0

(a)

�

; (35)

where f(a; �r) is an arbitrary function. We constructed this �eld as an exact solution

of the continuity equation divv = 0 and of the normal condition v �N = 0 on the

interface �r = �r

0

(a) of the vortex ring. At leading order this �eld (35) is a vortex sheet
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0.0 1.0 2.0 3.0
0.00

0.10

0.20

0.30

0.40

0.50

�r

�

~

 

11

�r

0

K

Figure 4. Radial evolution of the stream function

~

 

11

. The solid line is from Equation (31) and the

dashed line is from Equation (33).

!(0) = m�

�r=�r

0

=�r

2

0

e

'

. When f(a; �r) = 0, the �rst orders of this velocity �eld are

V

inn(0)

=

8

>

>

<

>

>

:

m

��r

2

0

t if �r

�

< 1;

0 if �r

�

> 1:

(36)
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V

inn(1)

=

8

>

>

<

>

>

:

m�r

0

0

(a)

��r

2

0

�r

�

e

r

if �r

�

< 1;

0 if �r

�

> 1:

(37)

If these velocities (36{37) are added to (28) and (29), this adds an axial ow of

strength m to the velocity �eld of the vortex ring previously studied.

6. The leading-order dynamical equations of the axisymmetric axial core

variation on a curved slender vortex

In this section we investigate the time evolution of axisymmetric axial core variation

on vortex �lament in order to understand the time evolution of the initial conditions

(27{30) to the Navier-Stokes equations. We denote the radial, circumferential and

axial components of the relative velocity �eld V by u; v; w; i.e. V = ue

r

+ ve

'

+ wt:

In a single-time-scale analysis for a vortex ring with axial core variation the inner

expansions of the relative velocity components are

u

inn

= u

(1)

(�r; '; s; t) +:::,

v

inn

= �

�1

v

(0)

(�r; s; t) + v

(1)

(�r; '; s; t) +:::,

w

inn

= �

�1

w

(0)

(�r; s; t) + w

(1)

(�r; '; s; t) +:::

Unfortunately, for the initial conditions (27{30) one cannot just use the single-time-

scale analysis for a vortex ring with axial core variation as given by Klein and Ting

[22], because the symmetric part of V

inn(1)

in Equation (29) does not satisfy the

following compatibility conditions of the single-time-scale analysis for a vortex ring

with axial core variation given by Ting and Klein [5, 22]

(�ru

(1)

c

)

�r

+

�r

�

(0)

w

(0)

s

= 0;

�

�rv

(0)

�

�r

�r

u

(1)

c

+

w

(0)

�

(0)

v

(0)

s

= 0;

w

(0)

�r

u

(1)

c

+

p

(0)

s

�

(0)

+

w

(0)

�

(0)

w

(0)

s

= 0; p

(0)

= �

Z

1

�r

v

(0)

2

�r

d�r; (38)

where u

(1)

c

is the axisymmetric part of the radial velocity at order unity and p

(0)

is the

leading-order pressure. Equations (28{29) give v

(0)

6= 0; w

(0)

= 0, and u

(1)

c

= 0: The

third equation of (38) is then not satis�ed as the axial derivative p

(0)

s

of the pressure

is not equal to zero. The vortex ring (27) without axial variation is the only one that

satis�es these compatibility conditions.

In fact, the time of evolution for these initial conditions (27{30) and for usual axial

core variation on a �lament is a time � = t=� that is in-between the time

�

t = t=�

2

of

evolution for a non-axisymmetric core and the time t of motion for a curved vortex.

This regime is not the same as the one considered by Ting and Klein [23, pp. 181{

185] , who studied axial core variation on an open vortex �lament by means of a

single-time-scale t and double-axial-scale (s; � = �s) analysis. In the double-time-scale

analysis (t; � = t=�) for an open �lament the long-time t behaviour of a core variation
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perturbation that evolves at short time � = t=� is to reach the far distance � = �s of

the Ting and Klein [23] regime. In the following the leading-order equations of this

double-time-scale analysis are given.

With this double-time-scale analysis the inner expansions of the relative velocity

components are

u

inn

= u

(1)

(�r; '; s; t; �) +:::,

v

inn

= �

�1

v

(0)

(�r; s; t; �) + v

(1)

(�r; '; s; t; �) +:::,

w

inn

= �

�1

w

(0)

(�r; s; t; �) + w

(1)

(�r; '; s; t; �) +:::

For this small time the derivatives with the small-time � appear in the compatibil-

ity conditions (38) of the single-time-scale analysis and these Equations become the

following equations of evolution for the axisymmetric part of the relative velocity �eld

(�ru

(1)

c

)

�r

+

�r

�

(0)

w

(0)

s

= 0;

@v

(0)

@�

+

�

�rv

(0)

�

�r

�r

u

(1)

c

+

w

(0)

�

(0)

v

(0)

s

= 0;

@w

(0)

@�

+ w

(0)

�r

u

(1)

c

+

p

(0)

s

�

(0)

+

w

(0)

�

(0)

w

(0)

s

= 0; p

(0)

= �

Z

1

�r

v

(0)

2

�r

d�r: (39)

When � = 1 the parameter on the centerline is an arclength and these equations are the

"long-wave scaling" shallow-water equations derived from studies of vortex breakdown

of a straight �lament [24]. Similar shallow-water equations have been deduced in an

ad-hoc way by Lundgren and Ashurts [11].

Let us de�ne the meridional stream function  , with

u

(1)

c

= �

1

�

(0)

�r

 

s

; w

(0)

=

1

�r

 

�r

;

and introduce the following transformation [24]

G = �rv

(0)

; y = �r

2

:

In these new variables the system (39) becomes
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h
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i

y

= 0; (40)

where D

2

 = rw

(0)

r

= 4y 

yy

. The axisymmetric parts of the velocity �elds (28{29)

and (36{37) give initial conditions to these equations of evolution on the small-time

� and their numerical integration is currently under investigation.

7. Conclusion

We have used the method of Matched Asymptotic Expansion of Singular Integrals

(MAESI) to obtain the inner expansion of the Biot-Savart law for a slender vortex
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with core variation. This expansion has been carried out in terms of the thickness of

the �lament and is the �rst inner expansion up to O(1) of the Biot-Savart law for

slender vortex �laments.

The MAESI method has been previously applied to the simpler case of the known

expansion, in terms of the small-distance r to a line vortex, of the potential ow (3)

induced by this line. This derivation is an alternative to the technique of the osculating

circle initially used by Widnall et al. The successive steps of this derivation have been

displayed so as to describe how this method works. This also provides an example of

the expansion of a singular integral in terms of a small parameter and this example may

be useful for other expansions of the same kind in uid dynamics (e.g. expansion of

ad-hoc de-singularized integrals) but also in other �elds (e.g. electromagnetics). The

relation between the cut-o� length introduced in the cut-o� line-integral technique

and the inner-core parameters C

v

and C

w

de�ned by Callegari and Ting has also been

given.

The obtained inner expansion of the Biot-Savart law was �nally used to give the

inner expansion of the velocity �eld induced by a family of curved vortex rings with

axial-core variation. This expansion was given up to order one in terms of the thickness

� of these vortices. This family of vorticity �elds gives an interesting example of initial

conditions for the Navier-Stokes equations. In order to understand the time-evolution

of these initial conditions, a short-time scale was introduced. This time is in-between

the time of the evolution of a non-axisymmetric core and the time of motion of a

curved vortex. A quasi-hyperbolic system that describes the leading-order dynamics

of axisymmetric axial-core variation on a curved slender vortex �lament was �nally

extracted from the Navier-Stokes equations and is of interest for comparison with

systems obtained in an ad-hoc way such as the one proposed by Lundgren and Ashurst.
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